0OS-9 Operating System User's Guide

For Use with OS-9 Level
One and OS-9 Level Two

0OS-9 Operating System User's Guide: For Use with OS-9 Level One

and OS-9 Level Two
Copyright © 1980, 1983 Microware Systems Corporation

All Rights Reserved.

111 oo [0 Tox 1 oo T v

T 1 o IS =T (= o 1
1.1. What You Need t0 RUN OS-9uiiiiiiiic e 1
111 Starting the SYSteM ..ou e 1
1.1.2. In Case You Have Problems Starting OS-9ccocoviieiiiiiiiiecie e, 1
1.1.3. A Quick Introduction to the Use of the Keyboard and DiskSccecevnneene 2

114 Initial EXPlOrationSccuuiiiiiieiiic e e e e e e e 2

1.2. Making a Backup of the System DisKccouiiiiiiiiiiii e 3
1.2.1. Formatting Blank DiSKSccuuiiiiiiiiiiiiiii e e 3
1.2.2. Running the Backup Programccccoiiiiiiiiiii e 4

2. BaSIC INtEraCtive FUNCLIONScevutiieiiiiiie e e et e et s e e e et s e e e et s e e eeaeneaees 5
2.1. Running Commands and Basic Shell Operationcccoocviieiiiiiciiincii e, 5
2.1.1. Sending Output t0 the Printercoovviiiiii e 5

2.2. Shell Command Line Parametersoveiieiiieeiiiiieeeeiie e 6
2.3. Some Common Command FOMMELScuuuieiiiiiieee it e e e e e e e eenes 7
2.4. Using the Keyboard and Video Displayccocevveiiiiiiiiieiiii e 7
2.4.1. Video Display FUNCLIONSc.uiiiiiiiiiiii e e e 8
2.4.2. Keyboard Shift and Control FUNCLIONScc.vviiiiieiiiiccie e 8
2.4.3. Control Ky FUNCLONSuuiiiiieiii e e e e e e e 8

3. The OS-9 Fle SYSIEIM ..uiiiiie e e e s 11
3.1. Introduction to the Unified INput/Output SyStemccccevviiiiiieiiii e, 11
3.2. Pathlists: HOw Paths Are Namedvviiiiiiiiiii e 11
3.3 /O DEVICE NAIMIES ..ottt ettt e e et e e e et e e e et e e eenanns 12
3.4. Multifile Devices And Directory FileScouuiiiiiiiiiie e 12
3.5. Creating and USiNG DITECIOMEScvvuieiiiieii e e e 13
3.6. Deleting DireCtory FilES ... oot 15
3.7. Additional Information ADOUL DIFECLONESvuuiiiiiiieeiiiii e 15
3.8. Using and Changing Working DIr€CtONESuuiviunieiiiieiii e e e e e e 16
3.8.1. Automatic Selection of Working DIreCtorieSooevvvveiiiieiiiieeiiieeiieeenn, 16
3.8.2. Changing Current Working DireCtOriescc.ovveiuieiiiiieiieeeieece e, 17
3.8.3. AnoNymous Directory NamMESccuuiiiiiiiiiiiccie e 17

3.9. The File SECUrty SYStEM .. .ccviiiiiiiii e e e e e 18
3.9.1. Examining and Changing File Attributesccoooeeiiiiiiiieie e, 18

3.10. Reading and Writing From FIlESccouiiiiiiiiiie e 19
3.10.1. File UsSage iN OS-9 ...uuiiiiiii e e 19
B10.2. TEXE FIIES v 20
3.10.3. Random Access Data FileSooevviviiieiiiieeec e 20
3.10.4. Executable Program Module FileSccoiiiiiiiiiieii e, 20
3.10.5. Dir€CtOry FIlES ..uuiii i e 21
3.10.6. Miscellaneous File USAgeccvvniiiiiiiiie e 21
3.10.7. Record Lockout (Level TWO ONlY) ...ccvvniiiiiiiiieeii e e 21

3.11. Physical File Organizzationcoeuuiiiiiiieeiie e e e e e 21
3.12. PhySICal SECLOT 1/O ..uiiiiiiiicee e 22
4. Advanced Features of the Shelloooouiiiii e 25
4.1. A More Detailed Description Command Line ProCeSSINGccvvvveviineeiiiieiinieeinenns 25
4.2, EXECULION MOOITIENS ... e 26
4.2.1. Alternate Memory Size MOdifi€roovviiiiiiiiiiie e, 26
4.2.2. 1/0O Redirection MOGIfiersoviiiiiiieiiii e 26

4.3, COMMANG SEPAIBEOIS ...vueeieeiiieeei et e e e et e e e e e e e et e e et e e st e et e e aaeeaenns 27
4.3.1. Sequential EXECULIONcovunieiieiiii e e e e e e e e e e e e e eaas 27
4.3.2. CONCUITENt EXECULION ...evviiiiiii e 27
4.3.3. PIPes and Filterscoovicii e 28

A @0 4 4140 I €010 o)1 g o [28
4.5, Built-in Shell Commands and OPLioNSoovuiiiiiiieiiiee e e 29
4.6. Shell Procedure FIlESuiiiiiii et 30
R (o g = (= oo o [30
4.8. Running Compiled Intermediate Code Programscccveveiiieiiiieeiineciiineeie e 31
4.9. Setting Up Timesharing System Procedure Filesccoviiiiiiiiiiiiiie e, 31

0S-9 Operating System User's Guide

5. Multiprogramming and Memory Managementoeveueeiiiieiiieriie e e eei e eieeeaneens 33
5.1. Processor Time Allocation and TimesliCingcccuvvviiieiiiiiiiiec e, 33

5.2, PrOCESS SEBLESueeieieieee e e ettt ettt e e e e enas 34

5.3. Creation Of NEGW PrOCESSEScivvviiiiiiiie et e e e s 34

5.4. Basic Memory Management FUNCLIONSc..oviiiiiiiiieiiiece e e e e 35
5.4.1. Loading Program Modules INt0 MemMOryceevuveiiinieiiieeiiieevieeeineeenn 35

5.4.2. Loading MUItiple Programsoevuuieiiiiiiii e e e e e e e e 37

5.4.3. Memory Fragmentationcc.oveiiiiieiiiiiiii e e e e e e e e e 37

6. USE Of the SYStEM DiSKiiiiiii e e e e e e e e e et e e eanaaees 39
B.1. The OSOBOOL FIlE ...ceeviiiiiiiiiee e e e e eaens 39

O B S ST B] (= v (] 40

6.3. The StartUP FIlE ..ou i e e e 40

6.4. ThE CMDS DITECLOIY ...vvuiiiiieiiii e e e et e et e e e e e e et e e et e e e e eaaeees 40

6.5. ThE DEFS DITECLOIYivuuieiiieii e ee et e e e e e e e e e et e e e e et e e eaeaees 40

6.6. Changing SyStEM DiSKSu.iiuueiiieiiii e e et e e e e e e e e e st e e e e eaaeees 40

6.7. Making New SyStem DisKSccuuuiiiiiiiiiieiiieeeiie e e e e e e e e e e e e e e e e e eaaeens 41

7. System Command DESCIHPLIONScuuuiiiiieiie e e e e e e e e e e e e e e e e e eeees 43
7.1. Formal Syntax NOLEEIONceuuiiiiiie e e e e e e e e eaaas 43

A 0 1 11474 o = TP 43

YO S Iy o] g 0o o /== PP 89
A.L DEVICE DIVEN EITOIS .ooutiiiiiiiii ettt et e e e eeeaa e eees 90

B. VDG Display System FUNCLIONSuiiiiiiiiiieiii e e e e e e e et e e e e e eaaees 91
B.1. The Video Display GENEIEIOrueviuiiiiiieeiie e e e e e e e et e e eees 91

B.2. AIPha MOde DiSPlayccuoeiiiieiiiiieii et et e e e e e e e e e 91

B.3. Graphics Mode Displaycvvuneiiiiiiii e e 92

B.4. Get StatuS COMMENAS ...evvuneieeiiieeeiie et e e e et e e et e e et s e e e et e e e ean s 94

C. Key Definitions With Hexadecimal ValUESoeviiiiiiiiiii e 97
D. GO51...The 51 Column by 24 Line Video Displaycc.ooevuiiiiiiiiiiiiiecieeeie e 99
D.1. The GO51 Display FUNCLIONSc.uiiiiiiiiiiieii e e e e e e e e e e 99

E. Using the Serial INterfatecoouniiiiiiii e e 101
E.1. Seria Printer IMplementationcccouiiiiiiiiiiiici e 101

E.2. Serial Terminal Implementationc.couiiiiiiiiiiiieiiie e 101
COMMENG SUMMEIY ...eetieiiiee e e e e e e e e e e e e e e et e e et e e et reeaa e e st eestnaeeanaentnees 103

Welcome to OS-9!

At the heart of your computer is an amazing device: the 6809 central processing unit (CPU). When
introduced in 1980, This microprocessor offered sophisticated features that were only found only on
much larger and costly computers. Even today, it is architecture is considered feature-rich. The OS-9
operating system was designed around the 6809 microprocessor to provide an extremely efficient and
powerful operating system.

Thefoundation of acomputer'ssoftware systemisitsOperating Systemor “ OS’. It isthemaster control
program that interfaces all other software to the system's hardware. Some of the thingsit must do are
performing input and output operations, coordinating memory use, and many other “housekeeping”
functions. All other software - programming languages, applications programs, etc. - live in your
computer's memory aong with the OS and depend on it to communicate with you using the keyboard
and display and to store and retrieve data on disks, etc. Because virtually all other software relies on
the OS, your computer's performance depends on the capabilities and efficiency of its OS.

0S-9's overall structure was based on the famous UNIX ! operating system, which has been widely
acclaimed asthe operating system of the future because of itsversatility, logical structure, and friendly
user commands. The OS-9 family of advanced software is not only more powerful than most other
microcomputer scftware - it isaso much easier to learn and use.

Some of the advanced OS-9 features you'll learn about in this book are:
1. Friendly UNIX-like user interface and environment

2. Multiuser/Multitasking Real-Time Operating System

3. Extensive support for structured, modular programming

4. Device-independent interrupt-driven input/output system

5. Multi-level directory file system

6. Fast Random-Access File System

7. Readily Expandable and Adaptable Design

If you don't know what some of these thing mean yet - don't worry. As you explore OS-9 you'll soon
learn how they enhance the capability of your computer and make it so much easier to use in almost
any application.

0S-9 has many commands and functions - definitely more than you can learn in an evening! The
best way to become an OS-9 expert is to study this manual carefully, section-by-section, taking time
to try out each command or function. Because many functions affect others, you'll find this manual
extensively cross-referenced so you can skip ahead to help you understand a new topic. Taking the
time to study this book will certainly increase your knowledge and enjoyment of OS-9.

But if you can't wait, at least read the rest of this chapter, scan the command descriptionsin a later
chapter, and have fun experimenting!

L UNIX is an operating system designed by Bell Telephone Laboratories, which is becoming widely recognized as a standard for mini and
micro operating systems because of its versatility and elegant structure.

Vi

Chapter 1. Getting Started...
1.1. What You Need to Run OS-9

0S-9 has been tailored to run on the TRS-80 Color Computers and Dragon 64. OS-9 Level Il can
only run on the Color Computer 3 due to the requirement of a memory management unit. To use it
you'll need the following:

e 64K memory for OS-9 Level One and 128K for Level |1
 Disk Drive With Controller Cartridge
¢ An 0S-9 System Disk

0OS-9 is aso ready to use the following optional equipment that you may have now or may obtain
in the future:

» Additional Floppy Disk Drives
* SCSl or IDE Hard Drives

* Printers and Modems

» Additional Serial Ports

» Joysticks and Mice

» Other OS-9 Compatible Languages and Software

1.1.1. Starting the System

To start up OS-9 follow these steps:

1. Turn the computer and disk drive(s) on. You should see the usual BASIC greeting message on
the screen.

2. Insert the OS-9 System Disk in drive zero and close the door.

3. Type “DOS’ or “BOOT".! After afew seconds of disk activity you should see a screen with the
words“0S9 BOOT".

4. OS-9 will then begin its“bootstrap” oading process, which involves ten to twenty seconds of disk
activity. When the system startup has finished, a message followed by the shell prompt will be

displayed.
1.1.2. In Case You Have Problems Starting OS-9

» If BASIC givesan error message after you type“DOS’, remove the disk, turn the computer off and
on, then try again. If thisrepeatedly fails your OS-9 diskette may be bad.

 Did you remember to turn the disk drive power switch on?
» Doesyour computer have the required RAM? Thisis amust!

« If your Color Computer doesn't seem to understand the DOS command, your controller has DOS
1.0. You will need to upgradeto DOS 1.1.

1«pOS’ on Color Computers, “BOOT” on Dragons.

A Quick Introduction to the
Use of the Keyboard and Disks

 If the “OS9 BOOT” message is displayed but nothing else happens, you may have a corrupted
system disk. Hopefully you did make a backup!

1.1.3. A Quick Introduction to the Use of the Keyboard and Disks

For now, the only special keys on the keyboard of interest are the key which works like a
typewriter shift key; the key which you always use after typing a command or response to
0OS-9; and the[_] left arrow key which you can use to erase typing mistakes.

Your main disk drive is known to to OS-9 as “/D0” and is often called “drive zero”. If you have a
second disk drive (drive one), OS-9 recognizesit as“/D1". Why would anybody put a“/” in aname?
Because al input and output devices have names like files, and names that start with “/” are aways
device names.

1.1.4. Initial Explorations

When OS-9first startsup, it will display awelcoming message, and then ask you to enter the date and
time. This allows OS-9 to keep track of the date and time of creation of new files and disks. Enter the
current date and time in the format requested like this:

YY/ MM DD HH: MM SS
TIME ? 83 7 14 1420

In the example above, the date entered was July 14, 1983. OS-9 uses 24-hour time so the date entered
was 1420 hours or 2:20 PM. Next, OS-9 will print the shell prompt to let you know it is ready for
you to type in acommand.

Now you're ready to try some commands. A good first command to try isdir (for “directory”). This
will display alist of the files on the System Disk. Just type:

dir
followed by a“return”. OS-9 should respond with alisting of file names which should look something
like this:

OS9Boot startup CVDS SYS DEFS

The file OS9Boot contains the OS-9 program in 6809 machine language, which was loaded into
memory during the bootstrap operation.

Thefilest ar t up isa“command file” which isautomatically run when the system starts up, and has
the commands that printed the welcoming message and asked for the time. Later, Y ou may want to
replace this startup file with your own customized version after you are more familiar with OS-9. Do
you want to see the contents of thisfile? If so, just type

list startup

Asyou can see, thelist command displaysthe contents of filesthat contain text (al phabetic characters).
Somefileslikethe OS9Boot file contain binary data such as machine language programs. Thesefiles
are called “binary files’, and attempts to list them will result in a jumbled, meaningless display. On
the other hand, OS-9 will complain mightily if you try to run atext file as a program!

As you may have surmised by now, the way you ask OS-9 to run a program or command (they're
really the same thing) isto simply type its name. Some commands like list require one or more names
of files or options. If so, they are typed on the same line using spaces to separate each item.

Making a Backup of the System Disk

But where did the list and dir programs come from? There are really more files on the disk than you
suspect. Thedir command showed you what isthe disk'sroot directory - so named because the 0OS-9
filing system resembles a tree. Growing out of the root directory are three “branches’ - files which
are additional directories of file namesinstead of programs or data. They in turn can have even more
“branches’ - ad infinitum. If you draw a map on paper of how thisworks it does look like atree.

The directory fileson your system disk are called CVDS, SYS, and DEFS. Thefile CVDS isadirectory
that consists of all the system commands such as dir, list, format, etc. To see the files contained in
this directory, enter:

dir cnds

which tells dir to show files on the directory file CMDS instead of the root directory. After you type
this you should see along list of file names. These are the complete set of command programs that
come with OS-9 and perform a myriad of functions. Chapter Seven explains each one in detail. The
dir command also has a handy option to display the CVDS directory with less typing:

dir x

Whenever you want alist of available commands you can use this so you don't havetolook it up in the
book. The dir command has options which can give you more detailed information about each file.

1.2. Making a Backup of the System Disk

Before getting too much more involved in further experimentation, NOW is the time to make one or
more exact copies of your System Disk in case some misfortune befalls your one and only master
System Disk. Making a backup involves two steps: formatting a blank disk and running a backup
program.

1.2.1. Formatting Blank Disks

Before the actual backup procedure can be done (or any fresh diskette is used for any purpose), the
blank disk which is to become the backup disk must be initialized by OS-9's format command.

IFYOU HAVE ONLY ONE DISK DRIVE you haveto be extra careful not to accidentally FORMAT
your system disk. Type:

format /dO

and when you see the message

COLOR COVPUTER FORMATTER
Formatting drive /dO

y (yes) or n (no)
Ready?

immediately remove your system disk and insert a blank disk before you type [v]. IF YOU HAVE
TWO DISK DRIVES place the blank disk in drive one and type:

format /dl
WHEN THE BLANK DISK IS IN THE RIGHT PLACE, type [Y], then [ENTER|. This initiates the

formatting process. IF THE CORRECT DEVICE NAME (/D1) IS NOT DISPLAYED: TYPE
RIGHT NOW and start over, OR YOU MAY ERASE your System Disk.

Running the Backup Program

When you are asked for adisk name, type any letter, then [ENTER]. The name you giveis not important.
If you have only one drive, replace the system disk after the format program has finished. If the
format program reported any errors, try again. Disks used for backups can't have any errors. You're
now ready to run the backup program.

It takes several minutes for the format program to run. During its second phase the hexadecimal
number of each track will be displayed as it is checked for bad sectors. If any are found an error
message for each bad sector is given.

1.2.2. Running the Backup Program

The backup program makes an exact duplicate of a disk. It can be used even if you only have one
disk drive.

IF YOU HAVE ONE DRIVE type

backup /d0 #32k

The backup program will prompt you to aternately insert the source disk (the system disk) and the
destination disk (the freshly formatted disk).

IF YOU HAVE TWO DRIVES type

backup #32K

The backup program will respond with

Ready to backup from/dO to /d1?

Now enter [Y] for yes. It will then ask:

X is being scratched
xk ?:

Answer [Y] for yes again, and the backup process should begin.

The backup command has two phases: the first phase copies everything from drive zero to drive one
checking for errors while reading from the master but not for “write” errors. The second phase is the
“verify” pass which makes sure everything was copied onto the new disk correctly. If any errors are
reported during the first (copy) pass, thereis a problem with the master disk or itsdrive. If errors occur
during the second (verify) pass, thereisa problem with the new disk and the backup program should
be run again. If backup repeatedly fails on the second pass, reformat the disk and try to backup again.
If backup fails again, the disk is physically defective.

After you have made your backup disk, try turning the computer off and restarting the system with
the copy you just made. If it works OK, store it in a safe place in case it is needed later. Y ou should
always have a backup copy of your system disk and all other important disks.

Chapter 2. Basic Interactive
Functions

2.1. Running Commands and Basic Shell Operation

Theshell isathe part of OS-9 that accepts commandsfrom your keyboard. It wasdesigned to providea
convenient, flexible, and easy-to-useinterface between you and the powerful functions of the operating
system. The shell is automatically entered after OS-9 is started up. You can tell when the shell is
waiting for input because it displaysthe shell prompt. This prompt indicates that the shell isactive and
awaiting a command from your keyboard. It makes no difference whether you use upper-case letters,
lower-case |etters, or a combination of both because OS-9 matches |etters of either case.

The command line always begins with a name of a program which can be:
» The name of a machine language program on disk
» The name of a machine language program already in memory

» The name of an executable program compiled by a high-level language such as Basic09, Pascal,
Caboal, etc.

» The name of aprocedurefile

If you're a beginner, you will almost always use the first case, which causes the program to be
automatically loaded from the CVDS directory and run.

When processing the command line, the shell searches for a program having the name specified in
the following sequence:

1. If the program named is already in memory, it isrun.

2. The “execution directory”, usually CMVDS, is searched. If afile having the name given is found, it
isloaded and run.

3. Theuser's“datadirectory” is searched. If afile having the name givenisfound, it is processed asa
“procedure file” which meansthat thefileis assumed to contain one or more command lineswhich
are processed by the shell in the same manner asif they had manually typed in one by one.

Mention is made above of the “data directory” and the “ execution directory”. At all times each user is
associated with two file directories. A more detailed explanation of directoriesis presented later. The
execution directory (usually CVDS) includes files which are executable programs.

The name given in the command line may be optionally followed by one or more “ parameters’ which
are passed to the program called by the shell.

For example, in the command line:

list filel
the program nameis list, and the parameter passed to it is FILEL.

A command line may also include one or more “maodifiers” which are specifications used by the shell
to ater the program's standard input/output files or memory assignments.

2.1.1. Sending Output to the Printer

Normally, most commands and programs display output on the computer video display. The output
of these programs can alternatively be printed by specifying output redirection on the command line.
Thisis done by including the following modifier to at the end of any command line;

Shell Command Line Parameters

>/ p

The">" character tells the shell to redirect output (See Section 4.3.2, “Concurrent Execution”) to the
printer using the computer's printer port, which hasthe device name*“ /P’ (See Section 3.3, “1/O Device
Names"). For example, to redirect the output of the dir command to the printer, enter:

dir >/'p

The xmode command can be used to set the printer port's operating mode such as auto line feed, etc.
For example, to examine the printer's current settings, type:

xnode /p

To change any of these type XMODE followed by the new value. For example, to set the printer port
for automatic line feeds at the end of every line, enter:

xnode /p I f;

2.2. Shell Command Line Parameters

Parameters are generally used to either specify file name(s) or to select options to be used by the
program specified in the command line given to the shell. Parameters are separated from the command
name and from each other by space characters (hence parameters and options cannot themselves
include spaces). Each command program supplied with OS-9 has an individual description in the last
section of this manual which describe the correct usage of the parameters of each command.

For example, thelist program isused to display the contents of atext fileonyour display. It isnecessary
totell tothelist program which fileit isto be displayed, therefore, the name of the desired fileisgiven
asaparameter in the command line. For example, to list thefile called startup (the system initialization
procedure file), you enter the command line:

list startup

Some commands have two parameters. For example, the copy command is used to make an exact
copy of afile. It requires two parameters:. The name of the file to be copied and the name of the file
which isto be the copy, for example:

copy startup newstartup

Other commands have parameters which select options. For example:

dir

shows the names of the files in the user's data directory. Normally it ssmply lists the file names only,
but if the “€” (for entire) option is given, it will also give complete statistics for each file such as the
date and time created, size, security codes, etc. To do so enter:

dir e
The dir command also can accept a file name as a parameter which specifies a directory file other

than the (default) data directory. For example, to list file namesin the directory sys, type:

dir sys

Some Common Command Formats

It is also possible to specify both adirectory name parameter and the e option, such as:

dir sys e

giving file names and complete statistics.

2.3. Some Common Command Formats

This section is a summary of some commands commonly used by new or casual OS-9 users, and
some common formats. Each command is followed by an example. Refer to the individual command
descriptions later int his book for more detailed information and additional examples. Parameters or
options shown in brackets are optional. Whenever a command references a directory file name, the
file must be adirectory file.

CHD fil enane chd DATA.DIR

Changes the current data working directory to the directory file specified.

COPY filenanmel fil ename2 copy oldfile newfile

Createsfilename2 asanew file, then copiesall datafrom “filenamel” toit. “filenamel” isnot affected.

DEL fil ename del ol dstuff

Deletes (destroys) the file specified.

DIR [filenane] [e] [X] dir nyfiles e

List names of files contained in adirectory. If the “x” option is used the files in the current execution
directory are listed, othervise, if no directory name is given, the current data directory will be listed.
The*“e” option selects the long format which shows detailed information about each file.

FREE devi cenane free /dl

Shows how much free space remains on the disk whose name is given.

LI ST fil enane list script

Displays the (text) contents of the file on the terminal.

MAKDI R fi |l enane makdi r NEWFI LES

Creates a new directory file using the name given. Often followed by a chd command to make it the
new working data directory.

RENAME fil enanmel fil enane2 rename zip zap

Changes the name of filenamel to filename2.

2.4. Using the Keyboard and Video Display

0S-9 has many features to expand the capability of the computer keyboard and video display. The
video display has screen pause, upper/lower case, and graphics functions. The keyboard can generate

Video Display Functions

all ASCII characters and has atype-ahead feature that permits you to enter data before requested by a
program (except if the disk is running because interrupts are temporarily disabled). Appendix B, VDG
Display System Functions of this manual is a list of the characters and codes that can be generated
from the keyboard. The keyboard/video display can be used as a file known by the name “/TERM”.

2.4.1. Video Display Functions

Thecomputer usesreversevideo (green lettersin ablack box) to represent lower-caseletters. Normally
they are not used, so you have to turn them on if you want to use them with the command:

t node -upc

The screen pause feature stops programs after 16 lines have been displayed. Output will continueif you
hit any key. Normally thisfeatureison. It can beturned on or off with thetmode command asfollows:

t node - pause turns pause node off
t node pause turns pause node on

The display system also has a complete set of commands to emulate commercial dataterminals, plus
a complete set of graphics commands. These are described in detail in Appendix C, Key Definitions
With Hexadecimal Values.

2.4.2. Keyboard Shift and Control Functions

Two keys are used in combination with other keys to change their meaning. The key selects
between upper case and lower case |etters or punctuation, and the [CTRL]" key can be used to generate
“control characters’.

The keyboard has a shift lock function similar to a typewriter's, which is normally “locked”. The
keyboard's shift lock may be reversed by depressing the control key and [0 keys simultaneously. The
shift lock only affects the letter (A-Z) keys. When the keyboard is locked, these keys generate upper
case letters, and lower case only if the key is depressed. When the keyboard is unlocked, the
reverse is true, e.g., lower case letters are generated unless the key is depressed at the same
time as aletter key.

2.4.3. Control Key Functions

There are a number of useful control functions that can be generated from the keyboard. Many of
these functions use “control keys’ which are generated by simultaneously depressing the key

plus some other key. For example, to generate the character for CONTROL]HD]| press the and O]
keys at the sametime.

[CONTROL|HA| Repeat previous input line. The last line entered will be
redisplayed but not processed, with the cursor positioned at the
end of theline. Y ou may hit return to enter the line, or edit the
line by backspacing, typing over charactersto correct them, and
entering control A again to redisplay the edited line.

[CONTROL|+D| Redisplay present input on next line.
[CONTROL|+W| Display Wait - This will temporarily halt output to the display

so the screen can be read before the data scrolls off. Output is
resumed when any other key is hit.

[CONTROL]+0 Shift lock. Reverses present shift lock state.

! The Color Computer models 1 & 2, and the Dragon 64 computers use the [CLEAR| key as there is no key.

Control Key Functions

[BREAK] (or [CONTROLJ+[H)

[SHIFT}+[BREAK] (or [CONTROL|+J)

[CONTROL[H{BREAK] ([ESCAPH)

] (or [CONTROLI+H)
SHIFTH{] (or [CONTROLMX)

Program abort - Stops the current running program

Interrupt - Reactivates Shell while keeping program running as
background task.

End-of-File - This key is used to send an end-of-file to
programs that read input from the terminal in place of adisk or
tape file. It must be the first character on the line in order for
it to be recognized.

Backspace - erase previous character

Line Delete - erases the entire current line.

10

Chapter 3. The OS-9 File System

3.1. Introduction to the Unified Input/Output System

0S-9 has a unified input/output system in which data transfers to ALL /O devices are performed
in amost exactly the same manner, regardless of the particular hardware devices involved. It may
seem that the different operational characteristics of the I/O devices might make this difficult. After
all, line printers and disk drives behave much differently. However, these differences can mostly be
overcome by defining a set of standardized logical functions for all devices and by making al 1/0
devices conform to these conventions, using software routines to eliminate hardware dependencies
wherever possible. This produces a much simpler and more versatile input/output system.

0S-9's unified 1/0 system is based upon logical entities called “1/0O paths’. Paths are analogous to
“software 1/0 channels” which can be routed from a program to a mass-storage file, any other 1/0
device, or even another program. Another way to say the same thing is that paths are files, and all I/
O devices behave asfiles.

Datatransferred through paths may be processed by OS-9 to conform to the hardware requirements of
the specific 1/O deviceinvolved. Datatransferscan beeither bidirectional (read/write) or unidirectional
(read only or write only), depending on the device and/or how the path was established.

Datatransferred through a path is considered to be a stream of 8-hit binary bytes that have no specific
type or value: what the data actually represents depends on how it is used by each program. Thisis
important because it means that OS-9 does not require data to have any special format or meaning.

Some of the advantages of the unified 1/O system are:

» Programswill operate correctly regardless of the particular 1/0 devices selected and used when the
program is actually executed.

» Programsare highly portablefrom one computer to another, even when the computers have different
kinds of 1/O devices.

* 1/O can be redirected to aternate files or devices when the program is run, without having to alter
the program.

* New or special device driver routines can easily be created and installed by the user.

3.2. Pathlists: How Paths Are Named

Whenever a path is established (or “opened”), OS-9 must be given a description of the “routing” of
the path. This description is given in the form of a character string called a “pathlist”. It specifies
a particular mass-storage file, directory file, or any other I/O device. OS-9 “pathlists’ are similar to
“filenames’ used by other operating systems.

The name “pathlist” is used instead of “pathname” or “filename” because in many cases it is alist
consisting of more than one name to specify a particular 1/0 device or file. In order to convey all the
information required, a pathlist may include a device name, one or more directory file names and a
data file name. Each name within a pathlist is separated by slash “/” characters.

Names are used to describe three kinds of things:

* Names of Physical I/O Devices

» Names of Regular Files

» Names of Directory Files

11

1/0 Device Names

Names can have one to 29 characters, all of which are used for matching. They must begin with an
upper- or lower-case letter followed by any combination of the following characters:

uppercase letters. A - Z
lowercase letters: a- z
decimal digits: 0- 9
underscore: _

period: .

Here are examples of legal names:

raw.data.2 projectreview.backup
reconciliation.report X 042953
RJJones search.bin

Here are examples of illegal names:

22November (does not start with aletter)
max*min (* isnot alegal character)
.data (does not start with aletter)
open orders (cannot contain a space)
this.name.obviously.has.more.than.29.characters (too long)

3.3. I/0O Device Names

Each physical input/output device supported by the system must have aunique name. The actual names
used are defined when the system is set up and cannot be changed while the system is running. The
device names used for the computer are:

TERM Video display/keyboard

P Printer port

DO Disk drive unit zero
D1 Disk drive unit one
PIPE Pipes

Device names may only be used as the first name of a pathlist, and must be preceded by a slash “/”
character to indicate that the name isthat of an 1/0 device. If the deviceis not adisk or similar device
the device name is the only name allowed. This is true for devices such as terminals, printers, etc.
Some examples of of pathlists that refer to I/0 devices are:

/TERM
P
/D1

I/O device namesare actually the names of the “ device descriptor modules’ kept by OS-9inaninternal
data structure called the “module directory” (See the OS-9 System Programmer's Manual for more
information about device driver and descriptor modules). Thisdirectory isautomatically set up during
0OS-9's system start up sequence, and updated as modules are added or deleted while the system is
running.

3.4. Multifile Devices And Directory Files

Multifile devicesare mass storage devices (usually disk systems) that store dataorganized into separate
logical entities called “files’. Each file has aname which isentered in adirectory file. Every multifile

12

Creating and Using Directories

device hasamaster directory (called the “root directory”) that includes the names of the files and sub-
directories stored on the device. Theroot directory is created automatically when thedisk isinitialized
by the format command.

Pathlists that refer to multifile devices may have more than one name. For example, to refer to the
file “mouse” whose name appearsin the root directory of device “D1” (disk drive one) the following
pathlist is used:

/d1/mouse

When OS-9 is asked to create a path, it uses the names in the pathlist sequentially from left to right to
search various directories to obtain the necessary routing information. These directories are organized
as a tree-structured hierarchy. The highest-level directory is called the “device directory”, which
contains names and linkages to al the I/O devices on a given system. If any of the devices are of a
multifile type they each have aroot directory, which is the next-highest level.

The diagram below is a simplified file system tree of atypical OS-9 system disk. Note that device
and directory names are capitalized and ordinary file names are not. This is a customary (but not
mandatory) practice which alows you to easily identify directory files using the short form of the

dir command.
System Devi ce Directory
e +
I I I I
Do TERM P D1
! !
! !
! !
DO Root Directory D1 Root Directory
oo + oo +
! ! ! ! ! !
DEFS startup C\VDS filel file2 file3
! !
I I
I I
- - - S S S +
! ! ! ! ! !
OS9Def s copy list dir del backup

The device names in this example system are “TERM”, “P’, “D0” and “D1”. The root directory of
device“DO0” includestwo directory files, DEFS and CVDS, and one ordinary file“ startup”. Notice that
device “D1” hasin itsroot directory three ordinary files. In order to access the file “file2” on device
“d1”, apathlist having two names must be used:

list /dl/file2

To construct a pathlist to access the file “dir” on device “d0” it is necessary to include in the pathlist
the name of the intermediate directory file CVDS. For example, to copy this file requires a pathlist
having three names to describe the “from” file:

copy /d0/cmds/dir tenp

3.5. Creating and Using Directories

It is possible to create a virtually unlimited number of levels of directories on a mass storage device
using the makdir command. Directories are a specia type of file (see Section 3.9.1, “Examining and

13

Creating and Using Directories

Changing File Attributes”). They can be processed by the same 1/0O functions used to access regular
files which makes directory-related processing fairly simple.

To demonstrate how directories work, assume that the disk in drive one (“d1”) has been freshly
formatted so that it has aroot directory only. The build command can be used to create atext file on
“d1”. The build command will print out “?" as a prompt to indicate that it is waiting for a text line
to be entered. It will place each line into the text file until an empty line with only a carriage return
is entered, as shown below:

0S9: build /di/filel

? This is the first file that
? we created.

? [ENTER]

The dir command will now indicate the existence of the new file:

0S9: dir /d1

Directory of /dl 15:45:29
filel

Thelist command can be used to display the text stored in the file:

0s9: list /di/filel

This is the first file
t hat we created.

The build command again is again used to create two more text files:

0S9: build /di/file2

? This is the second file
? that we created.

? [ENTER]

0S9: build /di/file3
? This is another file.
? [ENTER]

The dir command will now show three file names:

0s9: dir /d1
Directory of /Dl 15:52:29
filel file2 file3

To make a new directory in this directory, the makdir command is used. The new directory will
be called NEWDI R. Notice that throughout this manual directory names are always capitalized. This
is not a requirement of OS-9 (see Section 3.2, “Pathlists; How Paths Are Named”). Rather, it is a
practice popular with many OS-9 users because it allows easy identification of directory files at all
times (assuming all other file names use lower-case letters).

0S9: makdir / D1/ NEWDI R

The directory file NEWDI Ris now afilelisted in D1'sroot directory:

14

Deleting Directory Files

0s9: dir /D1

Directory of /DL 16:04:31
filel file2 file3 NEVDI R

Now we will create a new file and put in the new directory, using the copy command to duplicate
filel:

0S9: copy /dl/filel /dl/newdir/filel.copy

Observe that the second pathlist now has three names: the name of theroot directory (“D1"), the name
of the next lower directory (NEVWDI R), then the actua file name (fi | el. copy). Here's what the
directories look like now:

D1 Root Directory

filel. copy

The dir command can now show the filesin the new directory:

0S9: dir /D1l/ NEWDI R

Directory of /Dl/ NEWDI R
filel. copy

It is possible to use makdir to create additional new directories within NEVDI R, and so on, limited
only by available disk space.

3.6. Deleting Directory Files

Thedel command cannot be used to directly deleteadirectory file. If adirectory filethat still contained
file names were to be deleted, OS-9 would have no way to access the files or to return their storage
to the unallocated storage pool. Therefore, the following sequence must be performed to delete a
directory file:

1. All file names in the directory must be deleted.

2. Theattr command is used to turn off the files directory attrribute (-d option), making it an ordinary
file (see Section 3.9, “The File Security System”).

3. The file may now be deleted using the del command.

A simpler alternative isto use the deldir command to automatically perform all these steps for you.

3.7. Additional Information About Directories

The OS-9 directory system is very useful because it allows each user to privately organize files as
desired (by project, function, etc.), without affecting other files or other user'sfiles. Another advantage
of the hierarchical directory system is that files with identical names can be kept on the same device
aslong asthe names are in different directories. For example, you can have a set of test filesto check
out a program using the same file names as the program's actual working files. Y ou can then run the
program with test data or actual data ssimply by switching directories.

15

Using and Changing
Working Directories

Here are some important characteristics relating to use of directory files:

« Directories have the same ownership and security attributes and rules as regular files.
» The name of agiven file appears in exactly one directory.

* Files can only be added to directories when they are created.

» A fileand the directory in which its nameis kept must reside on the same device.

3.8. Using and Changing Working Directories

Each program (process) hastwo “working directories’ associated withit at all times: a“datadirectory”
and an “execution directory”. The working directory mechanism allows the name searching involved
in pathlist processing to start at any level (subtree) of the file system hierarchy. Any directory that the
user has permission to access (see Section 3.9, “The File Security System”) can be made a working
directory.

The rules used to determine whether pathlists refer to the current working directory or not are simple:

--->Whenthefirst character of apathlistisa®/”, processing of the pathlist startsat thedevicedirectory,
e.g., thefirst name must be a device name.

---> When the first character of a pathlist isnot a“/”, processing of the pathlist starts at the current
working directory.

Notice that pathlists starting with a“/” must be complete, in other words, they must have al names
required to trace the pathlist from the device directory down through all intermediate directories (if
any). For example:

/d2/JOE/WORKINGFIL ES/testresults

On the other hand, use of the current working directory allows all names in the file hierarchy tree to
beimplied instead of explicitly given. Thisnot only makes pathlists shorter, but allows OS-9 to |ocate
filesfaster because (typically) fewer directories need be searched. For example, if the current working
directory is/ D1/ PETE/ GAMES and a pathlist is given such as:

baseball
the actual pathlist implied is:
/DVUPETE/GAMES/baseball

Pathlists using working directories can also specify additional lower-level directories. Referring to the
example above, the pathlist:

ACTION/racing
implies the complete pathlist:
/DU/PETE/GAMES/ACTION/racing

3.8.1. Automatic Selection of Working Directories

Recall that two working directoriesarereferred to asthe* current execution directory” and the “ current
datadirectory”. Thereason two working directories are maintained is so that files containing programs
can be organized in different directories than files containing data. OS-9 automatically selects either
working directory, depending on the usage of the pathlist:

---> 0S-9 will search the execution directory when it attempts to load files into memory assumed to
be executable programs. This means that programs to be run as commands or loaded into memory
must be in the current execution directory.

16

Changing Current
Working Directories

---> The data directory is used for all other file references (such as text files, etc.)

Immediately after startup, OS-9 will set the data directory to be (the root directory of) the system disk
drive (usually “DQ"), and theworking directory to be adirectory called cnmds onthesamedrive (/ DO/
cds). On timesharing systems, the login command selects the initial execution and data directories
to the file names specified in each user's information record stored in the system password file(ref.
Section 5.4.2, “Loading Multiple Programs”).

Here is an example of a shell command statement using the default working directory notation, and
its equivalent expansion:

copy filel file2

If the current execution directory is/ DO/ CVDS and the current data directory is/ DO/ JONES, the
same command, fully expanded to show complete pathlists implied is:

0s9: / DO/ CVDS/ copy / DO/ JONES/filel /DO/JONES/file2

Notice that the first pathlist copy expands to the current working directory pathlist because it is
assumed to be an executable program but the two other file names expand using the data directory
because they are not assumed to be executable.

3.8.2. Changing Current Working Directories

The built-in shell commands chd and chx can be used to independently change the current working
data and execution directories, respectively. These command names must be followed by a pathlist
that describes the new directory file. Y ou must have permission to access the directory according to
normal file security rules. Here are some examples:

0s9: chd / D1/ My. DATAFI LES

0S9: chx / DO/ TESTPROGRAMS

When using the chd or chx commands, pathlists work the same as they do for regular files, except
for the last name in the pathlist must be a directory name. If the pathlist begins with a“/” , OS-9
will begin searching in the device directory for the new working directory, otherwise searching will
begin with the present directory. For example, the following sequence of commands set the working
directory to the samefile:

0s9: CHD / D1/ SARAH
059: CHD PROJECT1

0S9: CHD / D1/ SARAH PRQJECT1 (same effect as above)

3.8.3. Anonymous Directory Names

Sometimes is useful to be able to refer to the current directory or the next higher-level directory, but
its name (full pathlist) may not be known. Because of this, special “name substitutes’ are available.
They are:

refersto the present working directory

refers to the directory that contains the name of
the present directory (e.g., the next highest level
directory)

refersto directory two levels up, and so on

17

The File Security System

These can be used in place of pathlists and/or the first name in a pathlist. Here are some examples:

OS0: dir . lists file namesin the working data directory

OS9: dir .. lists names in the working data directory's parent
directory.

0OS0: del ../temp deletes the file tenp from the working data

directory's parent directory.

The substitute names refer to either the execution or data directories, depending on the context in
which they are used. For example, if . . isused in a pathlist of a file which will be loaded and/or
executed, it will represent the parent directory of the execution directory. Likewise, if . isusedin a
pathlist describing a program's input file, it will represent the current data directory.

3.9. The File Security System

Every file (including directory files) has properties called ownership and attributes which determine
who may access the file and how it many be used.

0S-9 automatically stores with each file the user number associated with the process that created it.
This user is considered to be the “owner” of thefile.

Usage and security functions are based on “ attributes”, which define how and by whom thefile can be
accessed. Thereareatotal of seven attributes, each of which can beturned “ off” or “on” independently.
The“d” attribute is used to indicate (when on) that the fileis adirectory file. The other six attributes
control whether the file can be read, written to, or executed, by either the owner or by the “public’
(al other users). Specifically, these six attributes are:

WRITE PERMISSION FOR OWNER: If on, the owner may write to the file or delete it. This
permission can be used to protect important files from accidental deletion or modification.

READ PERMISSION FOR OWNER: If on, the owner is allowed to read from the file. This can be
used to prevent “binary” files from being used as “text” files

EXECUTE PERMISSION FOR OWNER: If on, the owner can load the file into memory and execute
it. Note that the file must contain one or more valid OS-9 format memory modulesin order to actually
load

The following “public permissions” work the same way as the “owner permissions’ above but are
applied to processes having DIFFERENT user numbers than the file's owner.

WRITE PERMISSION FOR PUBLIC - If on, any other user may write to or delete thefile.
READ PERMISSION FOR PUBLIC - If on, any other user may read (and possibly copy) thefile.
EXECUTE PERMISSION FOR PUBLIC - If on, any other user may execute thefile.

For example, if aparticular file had al permissions on except “write permit to public” and “read permit
to public”, the owner would have unrestricted access to the file, but other users could execute it, but
not read, copy, delete, or alter it.

3.9.1. Examining and Changing File Attributes

The dir command may be used to examine the security permissions of the files in any particular
directory when the “€” option is used. An example using the dir e command to show the detailed
attributes of the filesin the current working directory is:

Directory of . 10:20:44

18

Reading and Writing From Files

Owner Last Modified Attributes Sector Bytecount Name

1 81/05/29 1402 --e--e-r 47 42 filel
0 81/10/12 0215 ---w-wr 48 43 file2
3 81/04/29 2335 -s----wr 51 22 file3
1 82/01/06 1619 d-ewew 6D 800 NEWDI R

This display isfairly self-explanatory. The “attributes’ column shows which attributes are currently
on by the presence or absence of associated characters in the following format:

dsewrewr

The character positions correspond to from left to right: directory; sharable; public execute; public
write; public read; owner execute; owner write; owner read. The attr command is used to examine
or change afile's attributes. Typing attr followed by afile name will result in the present attributes
to be displayed, for example:

0S9: attr file2
- S-Wr-ewr

If the command is used with alist of one or more attribute abbreviations, the fil€'s attributes will be
changed accordingly (if legal). For example, the command:

0S9: attr file2 pwpr -e -pe

enables public write and public read permissions and removes execute permission for both the owner
and the public.

The“directory” attribute behaves somewhat differently than the read, write, and execute permissions.
This is because it would be quite dangerous to be able to change directory files to normal files, and
creation of adirectory requires specia initialization. Therefore, the attr command cannot be used to
turn the directory (d) attribute on (only makdir can), and can be used to turn it off only if the directory
is empty.

3.10. Reading and Writing From Files

3.10.1.

A single file type and format is used for all mass storage files. Files store an ordered sequence of 8-
bit bytes. OS-9 is not usually sensitive to the contents of files for most functions. A given file may
store a machine language program, characters of text, or ailmost anything else. Data is written to and
read from files exactly as given. The file can be any size from zero up to the maximum capacity of
the storage device, and can be expanded or shortened as desired.

When afileiscreated or opened a“file pointer” isestablished for it. Byteswithin thefile are addressed
like memory, and the file pointer holds the “address’ of the next byte in the file to be written to or
read from. The OS-9 “read” and “write” service functions always update the pointer as data transfers
are performed. Therefore, successive read or write operations will perform sequential data transfers.

Any part of afile can also beread or written in non-sequential order by using afunction called “ seek”
to reposition the file pointer to any byte address in the file. This is used when random access of the
datais desired.

To expand afile, you can simply write past the previous end of the file. Reading up to the last byte of
afilewill cause the next “read” request to return an end-of-file status.

File Usage in OS-9

Even though there is physically only one type of file, thelogical usage of filesin OS-9 covers a broad
spectrum. Because al OS-9 files have the same physical type, commands such as copy, ddl, etc., can

19

Text Files

3.10.2.

3.10.3.

3.10.4.

be used with any fileregardliess of itslogical usage. Similarly, aparticular file can betreated as having
adifferent logical usage at different times by different programs. The main usage of files covered in
this section are:

TEXT

RANDOM ACCESS DATA
EXECUTABLE PROGRAM MODULES
DIRECTORIES

MISCELLANEOUS

Text Files

These files contain variable-length sequences (“lines’) of ASCII characters. Each line is terminated
by acarriage return character. Text files are used for program source code, procedure files, messages,
documentation, etc. The Text Editor operates on thisfile format.

Text files are usually read sequentially, and are supported by almost all high-level languages (such
as BASIC09 READ and WRITE statements). Even though is is possible to randomly access data at
any location within atext file, it is rarely done in practice because each line is variable length and it
is hard to locate the beginning of each line without actually reading the data to locate carriage return
characters.

The content of text files may be examined using the list command.

Random Access Data Files

Random-access data files are created and used primarily from within high-level languages such as
Basic09, Pascal, C, and Cobol. In Basic09 and Pascal, “GET”, “PUT", and “ SEEK” functions operate
on random-access files.

Thefile is organized as an ordered sequence of “records’. Each record has exactly the same length,
so given arecord's numerical index, the record's beginning address within the file can be computed
by multiplying the record number by the number of bytes used for each record. Thus, records can be
directly accessed in any order.

In most cases, the high-level language allows each record to be subdivided into “fields’. Each field
generaly has afixed length and usage for al records within the file. For example, the first field of
arecord may be defined as being 25 text characters, the next field may be two bytes long and used
to hold 16-bit binary numbers, etc.

It isimportant to understand that OS-9 itself does not directly process or deal with records other than
providing the basic filefunctionsrequired by all high-level languagesto create and use random-access
files.

Executable Program Module Files

These files are used to hold program modules generated by the assembler or compiled by high-level
languages. Each file may contain one or more program modules.

0OS-9 program modules resident in memory have a standard module format that, besides the object
code, includes a“module header” and a CRC check value. Program module(s) stored in files contain
exact binary copies of the programs as they will exist in memory, and not one byte more. OS-9 does
not requirea*load record” system commonly used by other operating systems because OS-9 programs
are position-independent code and therefore do not have to be loaded into specific memory addresses.

In order for OS-9to load the program module(s) from afile, thefileitself must have execute permission
and each module must have a valid module header and CRC check value. If a program module has
been altered in any way, either asafile or in memory, its CRC check value will be incorrect And OS-9
will refuse to load the module. The verify command can be used to check the correctness of the check
values, and update them to corrected values if necessary.

20

Directory Files

3.10.5.

3.10.6.

3.10.7.

On Level One systems, if afile hastwo or more modules, they are treated as independent entities after
loading and reside at different memory regions. On Level Two systems, two or more modules |oaded
from the same file comprise a “group”, are always assigned contiguous memory locations, and are
treated somewhat collectively. (See Section 5.4.2, “Loading Multiple Programs”)

Like other filesthat contain “binary” data, attemptsto “list” program files will result in the display of
random characters on the terminal giving strange effects. The dump command can be used to safely
examine the contents of this kind of file in hexadecimal and controlled ASCII format.

Directory Files

Directory files play a key role in the OS-9 file system. They can only be created by the makdir
command, and can be identified by the “d” attribute being set (see Section 3.9.1, “Examining and
Changing File Attributes’). Thefile is organized into 32-byte records. Each record can be a directory
entry. Thefirst 29 bytes of the record isastring of characterswhich isthefile name. Thelast character
of the name has its sign bit (most significant hit) set. If the record is not in use the first character
position will have the value zero. The last three bytes of the record is a 24-bit binary number which is
thelogical sector number where the file header record (see Section 3.11, “Physical File Organization”)
islocated.

The makdir command initializes all records in a new directory to be unused entries except for the
first two entries. These entries have thenames. and. . aong with the logical sector numbers of the
directory and its parent directory, respectively (see Section 3.8.3, “ Anonymous Directory Names”).

Directories cannot be copied or listed - the dir command is used instead. Directories also cannot be
deleted directly (see Section 3.6, “ Deleting Directory Files’).

Miscellaneous File Usage

0S-9's basic file functions are so versatile it is possible to devise an aimost unlimited number of
special-purposefileformatsfor particular applications, which do not fit into any of thethree previously
discussed categories.

Examples of this category are COBOL Indexed Sequential (ISAM) files and some special word
processor file formats which alow random access of text lines. As discussed in Sec. 3.9.1, most
0OS-9 utility commands work with any file format including these special types. In general, the dump
command is the preferred method for examining the contents of unusually formatted files.

Record Lockout (Level Two Only)

When afileis accessed by two or more processes simultaneously, the possibility exists that they may
attept to update the same record of the file at the same time, with unpredictable results. To avoid this
potential problem, OS-9 Level Two automatically “locks’ sections of all files opened in “update”
mode. The lock covers any disk sectors containing the bytes last read by each process accessing the
file. If another process attempts to access a locked portion of afile, the process is put to sleep until
the areais no longer locked.

A lock ismoved when thelocking processreads or writes an areaof the samefile outside the previously
locked section. They are terminated when the process associated with the lock closes its path to the
file. Each process can lock one area per file (but cna have locks on more than onefile).

An entire file can be locked by activating its “sharable” bit (see Section 3.9.1, “Examining and
Changing File Attributes’). When this attribute is on, only one process may open a path to thefile at
any given time. Any other processes attempting to access the file will receive an error code.

3.11. Physical File Organization

0S-9's file system implements a universal logical organization for all 1/0 devices that effectively
eliminates most hardware-related considerations for most applications. This section gives basic

21

Physical Sector I/O

information about the physical file structure used by OS-9. For more information, see the OS-9 System
Programmer's Manual.

Each OS-9 file is comprised of one or more sectors which are the physical storage units of the disk
systems. Each sector holds exactly 256 data bytes, and disk is numbered sequentially starting with
sector zero, track zero. This number is called a “logical sector number”, or LSN. The mapping of
logical sector numbersto physical track/sector numbersis done by the disk driver module.

Sectors are the smallest allocatable physical unit on a disk system, however, to increase efficiency on
some larger-capacity disk. systems, OS-9 uses uniform-sized groups of sectors, called clusters, asthe
smallest allocatable unit. Cluster sizes are always an integral power of two (2, 4, 8, etc.). One sector
of each disk isused asabitmap (usualy LSN 1), in which each data bit corresponds to one cluster on
the disk. The bits are set and cleared to indicate which clusters are in use (or defective), and which
arefreefor dlocation tofiles.

A 5.25 inch floppy disk system uses the following format:

» double density recording on one side
* 40 tracks per disk

* 18 sectors per track

* one sector per cluster

Each file has adirectory entry (see Section 3.10.5, “ Directory Files’) which includesthefile name and
the logical sector number of the file's “file descriptor sector”, which contains a complete description
of thefile including:

o attributes

e owner

* date and time created

* Size

» segment list (description of data sector blocks)

Unlessthefile sizeis zero, the file will have one or more sectors/clusters used to store data. The data
sectors are grouped into one or more contiguous blocks called “segments’. The segment list portion
of the header sector consists one record for each segment. The record contains the starting logical
sector number and size (number of sectors/clusters) of each segment. Therefore, the segment list has
all theinformation OS-9 needsto determine the sector number of any of thefile's sectors (and therfore,
data bytes).

If the various segments that comprise a file are physically scattered on the disk, the disk head must
travel more often and greater distances, especially when reading records from random accessfiles (see
Section 3.10.3, “Random Access Data Files’), thus degrading file access time. Therefore, OS-9's disk
allocation strategy isto minimize the number of segmentsif possible. It can do so more effectively if
programs cause larger amounts of storageto beallocated at atime. If afileisto have afixed sizewhich
is known beforehand, a program can cause all storage to be allocated by performing a “seek” to the
last byte to be used by the file, then writing dummy data to the last byte. This causes all storage to be
allocated in one operation which allows OS-9 to find the most optimum segment sizes and locations.

If files are expanded at many different times, or the disk storage becomes badly fragmented, access
time increases. When this happens, files should be copied (using dsave or copy but not backup) to
afreshly formatted disk.

3.12. Physical Sector 1/O

A specid pathlist can be used to perform “raw” physical I/O operations on adisk. The pathlist consists
of the device nameimmediately followed by an“ @" character (without a“/” in between), for example:

/1@

22

Physical Sector I/O

When this pathlist is used, the entire disk media is treated as one logical file. Any byte or sector on
the disk can be read or written without regard for the actual file structure. This featureis widely used
by utility programs sush as dir, attr, mfree, etc., to access sectors of the disk which are not part of
data areas of afile (such as header sectors).

Warning

Use extreme caution when using physical sector 1/0. Because any sector can be written on,
it is possible to severely damage the file structure and data on a disk.

Also, using “ @" completely defeats the file security and record locking systems.

To convert alogical sector number of an “@1" file to a byte number, multiply the sector number by
256 (the number of bytes per sector). Conversely, the logical sector number of a byte address is the
byte address divided by 256 (integer division).

Asan example, thefollowing command will giveacomplete“dump” of every databyte on disk device
“ do” :

dunp /do@

23

24

Chapter 4. Advanced Features of the
Shell

The basic shell functions were introduced in a prior chapter in order to provide an understanding
of how basic OS-9 commands work. In this section the more advanced capabilities of the shell are
discussed. In addition to basic command line processing, the shell has functions that facilitate:

* 1/O redirection (including filters)

* Memory Allocation

» Multitasking (concurrent execution)

* Procedure File Execution (background processing)
» Execution Control (built-in commands)

Thereisavirtually unlimited combination of ways these capabilities can be used, and it isimpossible
to give more than a representative set of examples in this manual. You are therefore encouraged to
study the basic rules, use your imagination, and explore the possihilities on your own.

4.1. A More Detailed Description Command Line
Processing

Theshell isaprogram that reads and processes command linesone at atimefromitsinput path (usually
your keyboard). Each line is first scanned (or “parsed”) in order to identify and process any of the
following parts which may be present:

A program, procedurefile, or built-in command name (“verbs’)
» Parametersto be passed to the program
 Execution modifiers to be processed by the shell

Note that only the verb (the program or command name) need be present, the other parts are optional.
After the verb has been identified, the shell processes modifiers (if any). Any other text not yet
processed is assumed to be parameters and passed to the program called.

Unlesstheverbisa*built-in command”, the shell will run the program named as anew process (task).
It then deactivates itself until the program called eventually terminates, at which time it gets another
input line, then the process is repeated. This happens over and over until an end-of-file condition is
detected on the shell's input path which causes the shell to terminate its own execution.

Here isa sample shell line which calls the assembler:
asmsourcefile | -0 >/p #12k

In this example:

asm istheverb
sourcefilel -0 are parameters passed to asm
>/p isamodifier which redirectsthe output (listing) to the

system's printer

#12K is a modifier which requests that the process be
assigned 12K bytes of memory instead of its (smaller)
default amount.

25

Execution Modifiers

The verb must be the first name in the command line. After it has been scanned, the shell first checks
if itisa“built-in” command. If itis, it isimmediately executed. Otherwise, the shell assumesitisa
program name and attempts to locate and execute it.

4.2. Execution Modifiers

Execution modifiers are processed by the shell before the program isrun. If an error is detected in any
of the madifiers, the run will be aborted and the error reported. Characters which comprise modifiers
are stripped from the part(s) of the command line passed to the program as parameters, therefore, the
characters reserved for use as modifiers (#; ! <> &) cannot be used inside parameters, but can be
used before or after the parameters.

4.2.1. Alternate Memory Size Modifier

When command programsareinvoked by the shell, they are allocated the minimum amount of working
RAM memory specified in the program's module header. A module header is part of al executable
programs and holds the program's name, size, memory requirements, etc. Sometimes it is desirable
to increase this default memory size. Memory can be assigned in 256-byte pages using the modifier
“#n” where n is the decimal number of pages, or in 1024 byte increments using the modifier “#nK”.
The two examples below behave identicaly:

0S9: copy #8 filel file2 (gives 8*256 = 2048 bytes)
0S9: copy #2K filel file2 (gives 2*1024 = 2048 byt es)

4.2.2.1/0 Redirection Modifiers

The second kind of modifier is used to redirect the program's “standard 1/0 paths’ to alternate files
or devices. Well-written OS-9 programs use these paths for routine 1/0. Because the programs do not
use specific file or device names, it isfairly simpleto “redirect” the I/O to any file or device without
altering the program itself. Programs which normally receive input from aterminal or send output to
aterminal use one or more of the standard /O paths as defined bel ow:

STANDARD INPUT: This path normally passes data from the terminal's keyboard to the program.

STANDARD OUTPUT PATH: This path is normally used to output data from the program to the
terminal's display.

STANDARD ERROR OUTPUT PATH: This path is used to output routine status messages such as
prompts and errorsto the terminal's display (defaults to the same device as the standard output path).
NOTE: The name*“error output” is sometimes misleading since many other kinds of messages besides
errors are sent on this path.

When new processes are created, they inherit their parent process standard /O paths. Therefore, when
the shell creates new processes, they usually inherit its standard I/O paths. When you log-on the shell's
standard input is the terminal keyboard; the standard output and error output is the terminal's display.
When a redirection modifier is used on a shell command line, the shell will open the corresponding
paths and pass them to the new process asits standard /O paths. There are three redirection modifiers
as given below:

< Redirect the standard input path
> Redirect the standard output path
>> Redirect the standard error output path

When redirection modifiers are used on a command line, they must be immediately followed by a
pathlist describing the file or device the I/O is to be redirected to or from. For example, the standard
output of list can be redirected to write to the system printer instead of the terminal:

0S9: list correspondence >/p

26

Command Separators

Files referenced by 1/0O redirection modifiers are automatically opened or created, and closed (as
appropriate) by the shell. Here is another example, the output of the dir command is redirected to the
file/ D1/ savel i sti ng:

0S9: DIR >/ D1/ savel isting

If thelist command is used on thefile/ D1/ savel i sti ng, output from the dir command will be
displayed as shown below:

0S9: list /dl/savelisting

Directory of . 10: 15: 00
nyfile savel i sting filel

Redirection modifiers can be used before and/or after the program's parameters, but each modifier can
only be used once.

4.3. Command Separators

A single shell input line can request execution of more than one program. These programs may be
executed sequentially or concurrently. Sequential execution meansthat one program must completeits
function and terminate before the next program is allowed to begin execution. Concurrent execution
means that several programs are allowed to begin execution and run simultaneously.

4.3.1. Sequential Execution

Programs are executed sequentially when each is entered on a separate line. More than one program
can be specified on asingle shell command line by separating each pr ogr am nane par anet er s
from the next onewith a*“;” character. For example:

0S9: copy nyfile /dl/newfile ; dir >/p
This command line will first execute the copy command and then the dir command.

If an error is returned by any program, subsequent commands on the same line are not executed
(regardless of the state of the “x” option), otherwise, “;” and “return” are identical separators.

Here are some more examples:
0S9: copy oldfile newfile; del oldfile; list newfile
0S9: dir >/dl/nyfile ; list tenp >/p; del tenp

All programs executed sequentially are in fact separate, child processes of the shell. After initiating
execution of a program to be executed sequentialy, the shell enters the “wait” state until execution
of the called program terminates.

4.3.2. Concurrent Execution

The second kind of separator isthe*&” which implies concurrent execution, meaning that the program
is run (as a separate, child process), but the shell does not wait for it to complete before processing
the next command.

The concurrent execution separator is therefore the means by which multiprogramming (running two
or more programs simultaneously) is accomplished. The number of programs that can run at the same
time is not fixed: it depends upon the amount of free memory in the system versus the memory
requirements of the specific programs. Here is an example:

0S9: dir >/ p&

27

Pipes and Filters

&007

0S9:

This command line will cause shell to start the dir command executing, print the process ID number
(&007), and thenimmediately display the* OS9:” prompt and wait for another command to be entered.
Meanwhile the dir command will be busy sending a directory listing to the printer. Y ou can display
a“status summary” of all processes you have created by using the procs command. Below is another
example:

0S9: dir >/p&list filel& copy filel file2 ; del tenp
Because they werefollowed by “&” separators, thedir, list, and copy programswill run concurrently,

but the del program will not run until the copy program has terminated because sequential execution
(*;7) was specified.

4.3.3. Pipes and Filters

Thethird kind of separator isthe“!” character which isused to construct “pipelines’ . Pipelines consist
of two or more concurrent programs whose standard input and/or output paths connect to each other
using “pipes’.

Pipes are the primary means-by which data is transferred from process to process (interprocess
communications). Pipes are first-in, first-out buffers that behave like mass-storage files.

I/O transfers using pipes are automatically buffered and synchronized. A single pipe may have several
“readers’ and severa “writers’. Multiple writers send, and multiple readers accept, data to/from the
pipe on afirst-come, first-serve basis. An end-of-file will occur if an attempt is made to read from a
pipe but there are no writers available to send data. Conversely, awrite error will occur if an attempt
is made to write to a pipe having no readers.

Pipelines are created by the shell when an input line having one or more “!” separators is processed.
For each “!1”, the standard output of the program named to the left of the “!” is redirected via a pipe
to the standard input of the program named to the right of the “!”. Individual pipes are crested for
each “!” present. For example:

0S9: update <master file ! sort ! wite_report >/p

In the example above, the program update hasitsinput redirected from apath callednmast er _fi l e.
Its standard output becomes the standard input for the program sort. Its output, in turn, becomes the
standard input for the program write_report, which has its standard output redirected to the printer.

All programs in a pipeline are executed concurrently. The pipes automatically synchronize the
programs so the output of one never “gets ahead” of the input request of the next program in the
pipeline. This implies that data cannot flow through a pipeline any faster than the slowest program
can processit. Some of the most useful applications of pipelinesarejobslike character set conversion,
print file formatting, data compression/decompression, etc. Programs which are designed to process
dataas components of apipelineare often called “filters’. Thetee command, which uses pipesto allow
datato be simultaneously “broadcast” from asingleinput path to several output paths, isauseful filter.

4.4. Command Grouping

Sections of shell input lines can be enclosed in parentheses which permits modifiers and separators
to be applied to an entire set of programs. The shell processes them by calling itself recursively (asa
new process) to execute the enclosed program list. For example:

0s9: (dir /dO; dir /d1l) >/p

gives the sameresult as:

28

Built-in Shell
Commands and Options

0S9: dir /dO >/p; dir /d1 >/p

except for the subtle differencethat the printer is“kept” continuously inthefirst example; in the second
case another user could “steal” the printer in between the dir commands.

Command grouping can be used to cause a group of programs to be executed sequentialy, but also
concurrently with respect to the shell that initiated them, such as:

0S9: (del filel; del file2; del file3)&

A useful extension of this form is to construct pipelines consisting of sequential and/or concurrent
programs. For example:

0S9: (dir CVDS; dir SYS) ! makeuppercase ! transmt

Hereis avery practical example of the use of pipelines. Recall that the dsave command generates a
procedurefileto copy all thefilesinadirectory. The example below shows how the output of dsave can
be pipelined to ashell which will executethe OS-9 commands asthey are generated by dsave. Assume
that we want to copy al files from a directory called WORKI NGto a directory called ARCHI VE:

0S9: chd /d0/ WORKI NG, dsave ! (chd /d0/ ARCH VE)

4.5. Built-in Shell Commands and Options

When processing input lines, the shell looksfor several special names of commands or option switches
that are built-in the shell. These commands are executed without loading a program and creating a
new process, and generally affect how the shell operates. They can be used at the beginning of aline,
or following any program separator (“;”, “&”, or “!”). Two or more adjacent built-in commands can
be separated by spaces or commas.

The built-in commands and their functions are:

chd pat hl i st change the working data directory to the directory specified by
the pathlist.

chx pat hl i st change the working execution directory to the directory
specified by the pathlist.

ex nane directly execute the module named. This transforms the shell
process so it ceasesto exist and anew modul e begins execution
inits place.

w wait for any process to terminate.

* text comment: “text” is not processed.

kill Proc I D abort the process specified.

setpr Proc I D changes process priority.

priority

X causes shell to abort on any error (default)

-X causes shell not to abort on error

p turns shell prompt and messages on (default)

-p inhibits shell prompt and messages

t makes shell copy all input lines to output

-t does not copy input lines to output (default)

The change directory commands switch the shell's working directory and, by inheritance, any
subsequently created child process. The ex command is used where the shell is needed to initiate
execution of aprogram without the overhead of a suspended shell process. The name used is processed
according to standard shell operation, and modifiers can be used.

29

Shell Procedure Files

4.6. Shell Procedure Files

The shell is areentrant program that can be simultaneously executed by more than one process at a
time. Asis the case with most other OS-9 programs, it uses standard 1/O paths for routine input and
output. specifically, it requests command lines from the standard input path and writesits prompts and
other datato the standard error path.

The shell can start up another process also running the shell by means of the shell command. If the
standard input path is redirected to a mass storage file, the new “incarnation” of the shell can accept
and execute command lines from the file instead of aterminal keyboard. The text file to be processed
is called a “procedure file”. It contains one or more command lines that are identical to command
lines that are manually entered from the keyboard. This technique is sometimes called “batch” or
“background” processing.

If the pr ogr am name specified on a shell command line can not be found in memory or in the
execution directory, shell will search the datadirectory for afile with the desired name. If oneisfound,
shell will automatically execute it as a procedurefile.

Execution of procedurefiles have anumber of valuable applications. It can eliminate repetitive manual
entry of commonly-used sequences of commands. It can allow the computer to execute alengthy series
of programs “in the background” while the computer is unattended or while the user is running other
programs “in the foreground”.

In addition to redirecting the shell's standard input to a procedurefile, the standard output and standard
error output can be redirected to another file which can record output for later review or printing. This
can also eliminate the sometimes-annoying output of shell messagesto your terminal at random times.

Here are two simple ways to use the shell to create another shell:
0S9: shell <procfile
0S9: procfile

Both do exactly the same thing: execute the commands of the file pr ocf i | e. To run the procedure
filein a“background” mode you simply add the ampersand operator:

0S9: procfile&

0S-9 does not have any constraints on the number of jobs that can be simultaneously executed aslong
asthereis memory available. Also, the procedure files can themselves cause sequential or concurrent
execution of additional procedure files. Here's a more complex example of initiating two processing
streams with redirection of each shell's output to files:

0S9: procl T >>statl& proc2 T >>stat2&

Note that the built-in command “T" (copy input linesto error output) was used above. They make the
output file contain arecord of al lines executed, but without useless “OS9” prompts intermixed. The
“-x" built-in command can be used if you do not want processing to stop if an error occurs. Note that
the built-in commands only affect the shell that executes them, and not any others that may exist.

4.7. Error Reporting

Many programs (including the shell) use OS-9's standard error reporting function, which displays an
error number on the error output path. The standard error codes are listed in the Appendix A, OS-9
Error Codes of this manual. If desired, the printerr command can be executed, which replaces the
smaller, built-in error display routine with alarger (and slower) routine that looks up descriptive error
messages from a text file called / dO/ sys/ er r msg. Once the printerr command has been run it
cannot be turned off. Also, its effect is system-wide.

30

Running Compiled
Intermediate Code Programs

Programs called by the shell can return an error code in the CPU's“B” register (otherwise B should be
cleared) upon termination. Thistype of error, aswell as errors detected by the shell itself, will causean
error message to be displayed and processing of the command line or procedure file to be terminated
unless the “-x" built-in command has been previously executed.

4.8. Running Compiled Intermediate Code Programs

Before the shell executes a program, it checks the program modul€'s language type. If its typeis not
6809 machine language, shell will call the appropriate run-time system for that module. Versions of
the shell supplied for various systems are capable of calling different run-time systems. Most versions
of shell call Basic09 when appropriate, and Level Two versions of shell can also call the Pascal P-
code interpreter (PascalN), or the CIS Cobol runtime system (RunC).

For example, if you wanted to run a Basic09 I-code module called adventure, you could type the
command given below:

0S9: basi c09 adventure
Or you could accomplish the same thing by typing the following:

0S9: adventure

4.9. Setting Up Timesharing System Procedure Files

0S-9 systems used for timesharing usually have a procedure file that brings the system up by means
of one simple command or by using the system st ar t up file. A procedure file which initiates the
timesharing monitor for each terminal is executed to start up the system. The procedure filefirst starts
the system clock, then initiates concurrent execution of a number of processes that have their 1/0
redirected to each timesharing terminal.

Usually onetsmon command program is started up concurrently for each terminal in the system. This
isaspecia program which monitors aterminal for activity. When a carriage return character is typed
on any of these terminals, the tsmon command initiates the login command program. If a user does
not enter a correct password or user number in three tries, the login command will be aborted. Here's
asample procedure file for a4-terminal timesharing system having terminals names“TERM”, “T1",
“T2",and “T3".

* system startup procedure file
echo Please Enter the Date and Tinme
setinme </term

printerr

tsnon /t1&

tsnon /t2&

tsnon /t3&

NOTE: Thislogin procedure will not work until a password file called / DO/ SYS/ PASSWORD has
been created. For more information, please see the login command description.

The example above deserves special attention. Note that the setime command hasits input redirected
to the system console “term”, which is necessary because it would otherwise attempt to read the time
information from its current standard input path, which is the procedure file and not the keyboard.

31

32

Chapter 5. Multiprogramming and
Memory Management

One of OS-9s most extraordinary abilities is multiprogramming, which is sometimes called
timesharing or multitasking. Simply states, OS-9 lets you computer run more than one program at the
same time. This can be a tremendous advantage in many situations. For example, you can be editing
one program while another is being printed. Or you can use your Color Computer to control household
automation and still be able to use it for routine work and entertainment.

OS-9 uses this capability al the time for internal functions. The simple way for you to do so is by
putting a“&” character at the end of a command line which causes the shell to run your command
as a“background task”.

The information presented in this chapter is intended to give you an insight into how OS-9 performs
this amazing feat. You certainly don't have to know every detail of how multiprogramming works
in order to use OS-9, but a basic working knowledge can help you discover many new ways to use
your Color Compulter.

In order to allow several programsto run simultaneously and without interference, OS-9 must perform
many coordination and resource allocation functions. The major system resources managed by OS-9
are:

CPU Time
Memory
The input/output system

In order for the computer to have reasonabl e performance, these resources must be managed in the most
efficient manner possible. Therefore, OS-9 uses many techniques and strategies to optimize system
throughput and capacity.

5.1. Processor Time Allocation and Timeslicing

CPU time is a resource that must be allocated wisely to maximize the computer's throughput. It is
characteristic of many programs to spend much unproductive time waiting for various events, such
as an input/output operation. A good example is an interactive program which communicates with a
person at aterminal on aline-by line basis. Every time the program hasto wait for aline of characters
to betyped or displayed, it (typically) cannot do any useful processing and would waste CPU time. An
efficient multiprogramming operating system such as OS-9 automatically assigns CPU time to only
those programs that can effectively use the, time.

0S-9 uses a technique called timeslicing which allows processes to share CPU time with all other
active processes. Timedlicing is implemented using both hardware and software functions. The
system's CPU isinterrupted by areal time clock many (60 in the Color Computer) times each second.
This basic time interval is called a “tick”, hence, the interval between ticks is a time dlice. This
technique is called timeslicing because each second of CPU time is sliced up to be shared among
several processes. This happens so rapidly that to a human observer all processes appear to execute
continuously, unless the computer becomes overloaded with processing. If this happens, a noticeable
delay in response to terminal input may occur, or “batch” programs may take much longer to run than
they ordinarily do. At any occurrence of atick, OS-9 can suspend execution of one program and begin
execution of another. The starting and stopping of programsis donein amanner that does not affect the
program's execution. How frequently a processis given time slices depends upon its assigned priority
relative to the assigned priority of other active processes.

The percentage of CPU time assigned to any particular process cannot be exactly computed because
there are dynamic variables such astime the process spends waiting for 1/0 devices. It can be roughly
approximated by dividing the process's priority by the sum of the priority numbers of all processes:

33

Process States

Process Priority
Process CPU Share = -------------------
Sum of All Active
Process' Priorities

5.2. Process States

The CPU time allocation system automatically assigns programs one of three “states’ that describe
their current status. Process states are also important for coordinating process execution. A process
may beinoneand only one state at any instant, although state changes may befrequent. The states are:

ACTIVE: processes which can currently perform useful processing. These are the only processes
assigned CPU time.

WAITING: processes which have been suspended until another process terminates. This state is used
to coordinate execution of sequential programs. The shell, for example, will be in the waiting state
during the time a command program it has initiated is running.

S_EEPING: processes suspended by self-request for a specified time interval or until receipt of a
“signal”. Signals are internal messages used to coordinate concurrent processes. This is the typical
state of programs which are waiting for input/output operations.

Sleeping and waiting processes are not given CPU time until they change to the active state.

5.3. Creation of New Processes

The sequence of operations required to create a new process and initially alocate its resources
(especially memory) are automatically performed by OS-9's “fork” function. If for any reason any
part of the sequence cannot be performed the fork is aborted and the prospective parent is passed
an appropriate error code. The most frequent reason for failure is unavailablity of required resources
(especially memory) or when the program specified to be run cannot be found. A process can create
many new processes, subject only to the limitation of the amount of unassigned memory available.

When a process creates anew process, the creator is called the “ parent process’, and the newly created
processiscalled the“child process’. The new child can itself become a parent by creating yet another
process. If a parent process creates more than one child process, the children are called “siblings”
with respect to each other. If the parent/child relationship of all processesin the system isexamined, a
hierarchical lineage becomes evident. In fact, this hierarchy is atree structure that resembles afamily
tree. The “family” concept makesit easy to describe relationships between processes, and so it isused
extensively in descriptions of OS-9's multiprogramming operations.

When the parent issues afork request to OS-9, it must specify the following required information:

* A PRIMARY MODULE, which isthe name of the program to be executed by the new process. The
program can aready be present in memory, or OS-9 may load it from a mass storage file having
the same name.

 PARAMETERS, which isdata specified by the parent to be passed to and used by the new process.
Thisdatais copied to part of the child process memory area. Parameters are frequently used to pass
file names, initialization values, etc. The shell, passes command line parameters this way.

The new process also “inherits’ copies of certain of its parent's properties. These are:

» A USER NUMBER which is used by the file security system and is used to identify all processes
belonging to a specific user (thisis not the same as the “process ID”, which identifies a specific
process) . This number is usually obtained from the system password file when a user logs on. The
system manager always is user number zero.

Basic Memory
Management Functions

e STANDARD INPUT AND OUTPUT PATHS: the three paths (input, output, and error/status) used
for routine input and output. Note that most paths (files) may be shared simultaneously by two or
more processes. The two current working directories are aso inherited.

* PROCESS PRIORITY which determines what proportion of CPU time the process receives with
respect to others.

As part of the fork operation, OS-9 automatically assigns:

» A PROCESS ID: anumber from 1 to 255, which is used to identify specific processes. Each process
has a unique process |ID number.

* MEMORY:: enough memory required for the new process to run. Level Two systems give each
process a unique “address space’. In Level One systems, all processes share the single address
space. A “data ared’, used for the program's parameters, variables, and stack is allocated for the
process exclusive use. A second memory area may also be required to load the program (primary
module) if it is not resident in memory.

To summarize, the following items are given to or associated with new processes:

» Primary Module (program module to be run)
 Parameter(s) passed from parent to child

» User Number

 Standard I/O paths and working directories
» Process Priority

* Process|D

* Memory

5.4. Basic Memory Management Functions

Animportant OS-9 function ismemory management. OS-9 automatically allocatesall system memory
to itself and to processes, and also keeps track of the logical contents of memory (meaning which
program modules are resident in memory at any given time). The result is that you seldom have to be
bothered with the actual memory addresses of programs or data.

Within the address space, memory is assigned from higher addresses downward for program modules,
and from lower addresses upward for data areas, as shown below:

e + highest address
pr ogram nodul es

(RAM or ROM

|

|

|

|

|

unused space !
(RAM or enpty) !
|

|

|

|

|

|

dat a areas

(RAM

e + | owest address (0)

5.4.1. Loading Program Modules Into Memory

When performing a fork operation, OS-9's first step is to attempt to locate the requested program
module by searching the “module directory”, which has the address of every module present in

35

Loading Program
Modules Into Memory

memory. The 6809 instruction set supports a type of program called “reentrant code” which means
the exact same “copy” of aprogram can be shared by two or more different processes simultaneously
without affecting each other, provided that each “incarnation” of the program has an independent
memory areafor its variables.

Almost all OS-9 family softwareisreentrant and can make most efficient use of memory. For example,
Basic09 requires 22K bytes of memory to load into. If arequest to run Basic09 is made, but another
user (process) had previously caused it to be loaded into memory, both processes will share the same
copy, instead of causing another copy to be loaded (which would use an additional 22K of memory).
0S-9 automatically keeps track of how many processes are using each program module and deletes
the module (freeing its memory for other uses) when all processes using the modul e have terminated.

If therequested program moduleisnot already in memory, the nameisused asapathlist (filename) and
an attempt is made to load the program from mass storage (see Section 3.10.4, “ Executable Program
Module Files").

Every program module has a “module header” that describes the program and its memory
requirements. OS-9 uses thisto determine how much memory for variable storage should be allocated
to the process (it can be given more memory by specifying an optional parameter on the shell command
line). The module header also includes other important descriptive informati on about the program, and
isan essential part of OS-9 operation at the machine language level. A detailed description of memory
modules and module headers can be found in the OS9 System Programmer's Manual.

Programs can also be explicitly loaded into memory using the load command. As with fork, the
program will actually be loaded only if it is not aready in memory. If the module is not in memory,
0OS-9 will copy a candidate memory module from the file into memory, verify the CRC, and then,
if the module is not already in the module directory, add the module to the directory. This process
is repeated until al the modules in the file are loaded, the 64K memory limit is exceeded, or until a
modulewith aninvalid format is encountered. OS-9 alwayslinksto the first module read from thefile.

Level One systems load modules on 256-bytes page boundaries. Level Two system load modules
contiguously on memory block boundaries. The block size is usually 2K per block for systems
equipped with MC6829 MMUSs, or 4K bytes for most SS-50 bus systems. Free memory to be used for
user data area need not be contiguous because the MM U can map scattered free blocks th be logically
contiguous. Since OS-9 will request the largest physically contiguous memory block available (up to
56K) to load program modules, load operations can fail even if sufficient total free memory exists.
Any of this memory not used by the load operation is returned to the system.

If the program module is already in memory, the load will proceed as described above, loading the
module from the specified file, verifying the CRC, and when attempting to add the valid moduleto the
module directory, noticing that the module is already known, the load merely increments the known
modul€'s link count (the number of processes using the module.) The load command can be used to
“lock” aprograminto memory. Thiscan be useful if the same program isto be used frequently because
the program will be kept in memory continuously, instead of being loaded repeatedly.

The opposite of load isthe unlink command, which decreases a program module's link count by one.
Recall that when this count becomes zero (indicating the modulein no longer used by any process), the
module isdeleted, e.g., its memory is deallocated and its name is removed from the module directory.
The unlink command is generally used in conjunction with the load command (programs loaded by
fork are automatically unlinked when the program terminates).

On Level Two systems, multiple modules loaded from a single file are logically associated by the
memory management logic. All modulesin the group will occupy contiguous physical memory blocks.
The group's memory can only be deallocated when al the modules which are members of the group
have zero link counts. Similarly, linking to one module within a group causes all other modules in
the group to be mapped into the process's address space. (see Section 3.10.4, “Executable Program
Module Files").

Here is an example of the use of load and unlink to lock a program in memory. Suppose the copy
command will be used five times. Normally, the copy command would be loaded each time the copy

36

Loading Multiple Programs

command is called. If the load command is used first, copy will be locked into memory first, for
example:

0S9: | oad copy

0S9: copy filel filela
0S9: copy file2 file2a
0S9: copy file3d file3a
0S9: unlink copy

It isimportant to use the unlink command after the program is no longer needed, or the program will
continue to occupy memory which otherwise could be used for other purposes. Be very careful not to
completely unlink modules in use by any process! Thiswill cause the memory used by the module to
be deallocated and its contents destroyed. This will certainly cause all programs using the unlinked
module to crash.

5.4.2. Loading Multiple Programs

Another important aspect of program loading is the ability to have two or more programs resident
in memory at the same time. This is possible because all OS-9 program modules are “position-
independent code”, or “PIC". PIC programs do not have to be loaded into specific, predetermined
memory addresses to work correctly, and can therefore be loaded at different memory addresses
at different times. PIC programs require specia types of machine language instructions which few
computers have. The ability of the 6809 microprocessor to use thistype of program is one of its most
powerful features.

The load command can therefore be used two or more times (or a single file may contain
several memory modules), and each program module will be automatically loaded at different, non-
overlapping addresses (most other operating systems write over the previous program's memory
whenever a new program is loaded). This technique also relieves the user from having to be directly
concerned with absolute memory addresses. Any number of program modules can be loaded until
available system memory isfull.

5.4.3. Memory Fragmentation

Even though PIC programs can be initially loaded at any address where free memory is available,
program modules cannot be relocated dynamically afterwards, e.g., once a program is loaded it must
remain at the address at which it was originally loaded (however Level Two systems can “load” (map)
memory resident programs at different addresses in each process' address space). This characteristic
can lead to a sometimes troublesome phenomenon called “memory fragmentation”. When programs
areloaded, they are assigned thefirst sufficiently large block of memory at the highest address possible
in the address space. If a number of program modules are loaded, and subsequently one or more
moduleswhich arelocated in between other modulesare* unlinked” , several fragments of free memory
space will exist. The sum of the sizes of the free memory space may be quite large, but because they
are scattered, not enough space will exist in asingle block to load a program module larger than the
largest free space.

The mfree command shows the location and size of each unused memory area and the mdir e
command shows the address, size, and link (use) count of each module in the address space. These
commands can be used to detect fragmentation. Memory can usually be de-fragmented by unlinking
scattered modules and reloading them. Make certain none are in use before doing so.

37

38

Chapter 6. Use of the System Disk

Disk-based OS-9 systems use a system disk to load many parts of the operating system during the
system startup and to provide files frequently used during normal system operations. Therefore, the
system disk is generally kept in disk drive zero (“/D0") when the system is running.

Two files used during the system startup operation, 0S9Boot and st art up must reside in the
system disk'sroot directory. Other files are organized into three directories: CVDS (commands), DEFS
(system-wide definitions), and SYS (other system files). Other files and directories created by the
system manager and/or users may also reside on the system disk. These frequently include each user's
initial data directory.

6.1. The OS9Boot File

The file called 0S9Boot loaded into RAM memory by the “bootstrap” routine located in the OS-9
firmware. It includes file managers, device drivers and descriptors, and any other modules which are
permanently residentin memory. A typical Microware OS-9 distribution disk's OS9Boot filecontains
the following modules:

All editions

0OS9P2 OS-9Kerndl, Part 2

IOMan OS-9 Input/Output Manager

Init Initialization Data Module

RBF Random Block (disk) File Manager

SCF Sequential Character (terminal) File Manager
PipeMan Pipeline File Manager

Piper Pipeline Driver

Pipe Pipeline Device Descriptor

Term Terminal Device Descriptor

DD, DO, D1 Disk Device Descriptors

Printer Printer Device Driver

P Printer Device Descriptor

Clock Real-Time Clock Module

Dragon 64

KBVDIO K eyboard/Video/Graphics Device Driver
DDisk Disk Driver

SYSGO System Startup Process

TRS-80 Color Computer 3

Ccc3io CoCo 3 Keyboard/Video Device Driver
Windint CoCo 3 Graphics Co-Module

VDGInt CoCo 2 Compatible Graphics Co-Module
CC3Disk CoCo 3 Disk Driver

CC3Go System Startup Process

Users may create new bootstrap files which may include additional modules (see OS9Gen command).
Any module loaded as part of the bootstrap cannot be unlinked and is stored in memory with
a minimum of fragmentation. In Level One, it is advantageous to include in the OS9Boot file
any module used constantly during normal system operation. This can be done with the OS9GEN
command. In Level Two, however, since files placed in the OS9boot file will be loaded into the same

39

The SY S Directory

memory block, when the system switches the boot block into its own address space, the non-system
files decrease the amount of memory addressable in system mode. Alternatively, optional modules
should be placed in a separate file that isload as part of the system startup procedure.

6.2. The SYS Directory

The directory / dO/ SYS contains two important files:

password the system password file (see login command)
motd message of the day file, displayed during login
errmsg the error message file

These files (and the SYS directory itself) are not absolutely required to boot OS-9, they are needed
if login, tsmon, or printerr will be used. Users may add other system-wide files of similar nature
if desired.

6.3. The Startup File

Thefile/ dO/ st ar t up isashell procedure file which is automatically processed immediately after
system startup. The user may include in st art up any legal shell command line. Often this will
include setime to start the system clock. If this file is not present the system will still start correctly
but the user must run the SETIME command manually.

6.4. The CMDS Directory

The directory / dO/ CVDS is the system-wide command object code directory, which is normally
shared by all users as their working execution directory. If shell is not part of the OS9Boot file, it
must be present in thisdirectory. The system startup process* sysgo” makes CVDS theinitial execution
directory.

6.5. The DEFS Directory

The directory / dO/ DEFS is a directory that contains assembly language source code files which
contain common system-wide symbolic definitions, and are normally included in assembly language
programs by means of the OS-9 Assembler “use” directive. The presence and use of this directory
is optional, but highly recommended for any system used for assembly language programs. The files
commonly contained in this directory are:

OS9Defs main system-wide definition file
RBFDefs RBF file manager definition file
SCFDefs SCF file manager definition file
Systype System types definition file

6.6. Changing System Disks

The system disk is not usually removed while the system is running, especially on multiuser systems.
If itis, the chx and chd (if the working data directory was on the system disk) commands should be
executed to reset the working directory pointers because the directories may be at different addresses
on the new disk, for example:

chx /doO/cmds
chd /do

40

Making New System Disks

In general, it is unwise to remove a disk and replace it with another if any paths are open to files
resident on the disk. It is dangerous to exchange any disk if any files on it are open in WRITE or

UPDATE modes.

6.7. Making New System Disks

To make a system disk, the following steps must be performed:

1. The new disk must be formatted.

2. The OS9Boot file must be created and linked by the OS9Gen or Cobbler commands.
3. Thest ar t up file must be created or copied.

4. The CVDS and SYS directories and the files they contain must be copied.

Steps 2 through 4 may be performed manually, or automatically by any of the following methods:

1. By ashell procedure file created by the user.
2. By ashell procedure file generated by the dsave command

3. By the backup command

41

42

Chapter 7. System Command
Descriptions

This section contains descriptions for each of the command programs that are supplied with OS-9.
These programs are usually called using the shell, but can be called from most other OS-9 family
programs such as BASICO09, Interactive Debugger, Macro Text Editor, etc. Unless otherwise noted,
these programs are designed to run asindividual processes.

Warning
Although many OS-9 commands may work on Level One or Level Two systems, there are

differences. Take care not to mix command files from Level One systemson Level Two, or
thereverse.

7.1. Formal Syntax Notation

Each command description includes a syntax definition which describes how the command sentence
can be constructed. These are symbolic descriptions that use the following notation:

[= Brackets indicate that the enclosed item(s) are optional.

{} = Braces indicate that the enclosed item(s) can be either omitted or
repeated multiple times.

pat h = Represents any legal pathlist.

devnane = Represents any legal device name.

nodnane = Represents any legal memory module name.

procl D = Represents a process number.

opts = One or more options defined in the command description.

argli st = alist of arguments (parameters).

t ext = acharacter string terminated by end-of-line.

NOTE: The syntax of the commands given does not include the shell's built in options such as alternate
memory size, 1/0 redirection, etc. Thisis because the shell will filter its options out of the command
line before it is passed to the program being called.

7.2. Commands

Name
ASM — Assembler
Editor/Assembler/Debugger

Synopsis
asmfilenane[o=outfile][>lig]

Description

Standard OS-9 Assembler. If no “0” option is given, then the assembler only checks syntax. If the
output file provided is not afull path then it is created in the execution directory.

Examples

asm #10k hel |l oworl d. a o=hel | owor| d

Name

ATTR — Change file security attributes

Synopsis

attr path[{ perm ssi on abbreviations}]

Description

Thiscommand is used to examine or change the security permissions of afile. To enter the command,
type attr followed by the pathlist for the file who's security permissions are to be changed, followed
by a list of permissions which are to be turned on or off. A permission is turned on by giving its
abbreviation, or turned off by preceding its abbreviation with aminus sign. Permissions not explicitly
named are not affected. If no permissions are given the current file attributes will be printed. Y ou can
not change the attributes of a file which you do not own (except for user zero, who can change the
attributes of any file in the system).

Thefile permission abbreviations are:

d = Directory file

s= Sharablefile

r = Read permit to owner

w = Write permit to owner

e = Execute permit to owner
pr = Read permit to public
pw = Write permit to public
pe = Execute permit to public

The attr command may be used to change a directory file to a non-directory file if all entries have
been deleted from it. Since the DEL command will only delete non-directory files, this is the only
way a directory may be deleted. Y ou cannot change a non-directory file to a directory file with this
command (see makdir).

For more information see: Section 3.9, “The File Security System”, Section 3.9.1, “Examining and
Changing File Attributes’

Examples

Name

attr nyfile -pr -pw

attr nmyfiler we pr rw pe

attr datal og
-S- W -wWr

BACKUP — Make a backup copy of adisk

Synopsis

backup[e][s][-Vv][devnhane [devnane]]

Description

This command is used to physically copy al data from one device to another. A physical copy is
performed sector by sector without regard to file structures. In almost all cases the devices specified
must have the exact same format (size, density, etc.) and must not have defective sectors.

If both device name are omitted the names “/d0” and “/d1” are assumed. If the second device nameis
omitted, asingle unit backup will be performed on the drive specified.

The options are:

E = Exit if any read error occurs.
S = Print single drive prompt message.
-V = Do not verify.
#nK = more memory makes backup run faster

Examples

Name

backup /D2 /D3

backup -V

0S9: backup

Ready to BACKUP from /DO to /D1 ?: Y
MYDI SK i s bei ng scratched

XK ?2: Y

Nunber of sectors copied: $04D0
Verify pass

Nunber of sectors verified: $04D0
0s9:

Below is an example of a single drive backup. backup will read a portion of the source disk into
memory, you remove the source disk and place the destination disk into the drive, backup writes on
the destination disk, you remove the destination disk and place the source disk into the drive. This
continues until the entire disk has been copied. Giving backup as much memory as possiblewill cause
fewer disk exchanges to be required.

For more information see: Section 1.2.2, “Running the Backup Program”

0S9: backup /DO #10k

Ready to BACKUP from /DO to /DO ?: Y
Ready DESTI NATION, hit a key:

MYDI SK i s bei ng scratched

XK ?2: Y

Ready SOURCE, hit a key:

Ready DESTI NATION, hit a key:

Ready SOURCE, hit a key:

Ready DESTI NATION, hit a key:

(several repetitions)
Ready DESTI NATION, hit a key:
Nurmber of sectors copied: $4D0

Verify pass
Nurmber of sectors verified: $4D0

BASIC09 — Basic interpreter and compiler

Basic09 language system

Synopsis

basi c09 [fi | enane]

Description

The Auto-run feature allows BASIC09 to get the name of afileto load and run from the same command
lineusedto call BASICQ9. Thefileloaded and run can be either aSAVED file (in thedatadirectory), or
aPACKED file (in the execution directory). Thefile may contain several procedures; the one executed
isthe onewith the same name asthefile. Parameters may be passed following the pathname specified.

Once one or more BASICO09 procedures are debugged to the programmer's satisfaction, they can be
“packed” or converted permanently to bytecode form. Comments and names of local variables are
discarded during packing, so that in BASIC09, comments and intelligible variable names are not
considered a burden to be avoided in the name of efficiency.

Examples

0s9: BASI C09

READY

B: bye

0S9: BASI C09 printreport("Past Due Accounts")

0S9: BASI C09 eval uat e(COS(7. 8814)/12. 075, -22. 5, 129. 055)

See Also

Name

BASIC09 Programming Language Reference Manual

BINEX — Convert Binary To S-Record File

Synopsis

bi nex pat hl pat h2

Description

S-Record files are a type of text file that contains records that represent binary data in hexadecimal
character form. This Motorola-standard format is often directly accepted by commercia PROM
programmers, emulators, logic analyzers and similar devices that are interfaced RS-232 interfaces. It
can also be useful for transmitting files over data links that can only handle character-type data; or to
convert OS-9 assembler or compiler-generated programs to load on non-OS-9 systems.

Binex converts “pathl”, an OS-9 binary format file, to a new file named “ path2” in S-Record format.
If invoked on a non-binary load module file, a warning message is printed and the user is asked
if binex should proceed anyway. A “Y” response means yes; any other answer will terminate the
program. S-Records have a header record to store the program name for informational purposes and
each data record has an absolute memory address which is not meaningful to OS-9 since it uses
position-independent-code. However, the S-Record format requires them so binex will prompt the
user for a program name and starting load address. For example:

bi nex /d0/cnds/ scanner scanner. S1
Enter starting address for file: $100

46

Ent er nane for header record: scanner

To download the program to a device such as a PROM programmer (for example using serial port
T1) type:

list scanner.S1 >/T1

Name

BUILD — Build atext file from standard input
Synopsis

buil dpath
Description

Thiscommand is used to build short text files by copying the standard input path into the file specified
by pat h. Build creates afile according to the pathlist parameter, then displaysa“?’ prompt to request
an input line. Each line entered is written to the output path (file). Entering a line consisting of a
carriage return only causes build to terminate.

Example:

Name

build small _file
build /p (copi es keyboard to printer)
The standard input path may also be redirected to afile. Below is an example:

build <nytext /T2 (copies file “mytext” to termnal T2)

0S9: build newfile

? The powers of the 0O 9

? operating systemare truly
? fantastic.

? [RETURN

0S9: list newfile
The powers of the OS-9

operating systemare truly
fantastic.

CC — C Compiler

Synopsis

cc [optiong] fi | e... [options]

Description

The are two commands which invoke distinct versions of the compiler. ccl isfor OS-9 Level | which
uses a two pass compiler, and, cc2 is for Level 11 which causes a single pass version. Both versions

47

of the compiler works identically, the main differenceis that ccl has been divided into two passesto
fit the smaller memory size of OS-9 Level | systems. In the following text, “cc” refers to either ccl
or cc2 as appropiate for your system.

Options

Recognized options. (UPPER and lower case is equivalent)

-a Suppress assembly. Leave output in “.a’" file.

-e=n Edition number (n) is supplied to c.prep for inclusion in module psect
and/or to c.link for inclusion asthe edition number of thelinked module.

-0 Inhibits assembly code optimizer pass.

-p Invoke compiler function profiler.

-r Suppress link step. Leave output in “.r” file.

-m=si ze Size in pages (in kbytes if followed by a K) of additional memory the
linker should allocate to object module.

-l=pat h Library filefor linker to search before the standard library.
-f=pat h Override other output naming. Module name (in object module) is the
last name in the pathlist. -f is not allowed with -aor -r.
-C Output comments in assembly language code.
-S Suppress generation of stack-checking code.
-dNAME Is equivalent to #define NAME 1 in the preprocessor. -dNAMVE=STRI NG
is equivaent to #define NAVE STRI NG
-n=nane output module name. nane is used to override the -f default output
name.
CClonly:
-X Create, but do not execute c.com command file.
CC2 only:
-q Quiet mode. Suppress echo of file names.
Name
CHD/CHX — Change working data directory / Change working execution directory
Synopsis
chd pat hl i st
chx pat hl i st
Description

These are shell “built in” commands used to change OS-9's working data directory or working
execution directory. Many commands in OS-9 work with user data such as text files, programs, etc.
These commands assume that a file is located in the working data directory. Other OS-9 commands
will assumethat afileisin the working execution directory.

NOTE: These commands do not appear in the CMDS directory as they are built-in to the shell.

For more information see: Section 3.8, “Using and Changing Working Directories’, Section 3.8.2,
“Changing Current Working Directories”

48

Examples

chd /d1/ PROGRANMS

chx ..

chx binary files/test prograns
chx / DO/ CMDS; chd /D1

Name
CMP — File Comparison Utility

Synopsis
cnrpfilelfile2

Description
Opens two files and performs a comparison of the binary values of the corresponding data bytes of
thefiles. If any differences are encountered, the file offset (address) and the values of the bytes from

each file are displayed in hexadecimal.

The comparison ends when end-of-file is encountered on either file. A summary of the number of
bytes compared and the number of differences found is then displayed.

Examples

0S9: cnp red bl ue
Di fferences

byte #1 #2

00000013 00 01
00000022 BO Bl
0000002A 9B AB
0000002B 3B 36
0000002C 6D 65

Byt es conpar ed: 0000002D
Bytes different: 00000005

0S9: cmp red red

Di fferences
None ...

Byt es conpar ed: 0000002D
Bytes different: 00000000

Name
COBBLER — Make a bootstrap file

Synopsis

49

cobbl er devi ce nane

Description

Cobbler is used to create the OS9Boot file required on any disk from which OS-9 is to be
bootstrapped. The boot file will consist of the same modules which were loaded into memory during
the most recent boostrap. To add modules to the bootstrap file use the OS9Gen command. Cobbler
also writes the OS-9 kernel on thefirst fifteen sectors of track 34, and excludes these sectors from the
disk allocation map. If any files are present on these sectors cobbler will display an error message.
Level Two systems must use OS9Gen to create bootstrap files.

NOTE: The boot file must fit into one contiguous block on the mass-storage device. For this reason
cobbler is normally used on a freshly formatted disk. If cobbler is used on a disk and there is not
a contiguous block of storage large enough to hold the boot file, the old boot file may have been
destroyed and OS-9 will not be able to boot from that disk until it is reformatted.

For more information see: Section 1.2.2, “Running the Backup Program”, Section 6.1, “ The OS9Boot
File’

Examples

Name

0S9: cobbler /D1

COPY — Copy data from one path to another

Synopsis

copy pathpath[-s]

Description

This command copies data from the first file or device specified to the second. Thefirst file or device
must already exist, the second fileisautomatically created if the second path isafile on amass storage
device. Datamay be of any type and isNOT modified in any way asit is copied.

Data is transferred using large block reads and writes until end-of-file occurs on the input path.
Because block transfers are used, normal output processing of data does not occur on character-
oriented devices such as terminals, printers, etc. Therefore, the list command is preferred over copy
when afile consisting of text isto be sent to aterminal or printer.

The“-s" option causes copy to perform asingle drive copy operation. The second pathlist must be a
full pathlist if “-s’ appears. Copy will read a portion of the source disk into memory, you remove the
source disk and place the destination disk into the drive, enter a“C” whereupon copy writes on the
destination disk, this process continues until the entire file is copied.

Using the shell's alternate memory size modifier to give alarge memory space will increase speed and
reduce the number of media exchanges required for single drive copies.

Examples

copy filel file2 #15k (copies filel to file2)
copy /dl/joel/ news / DO/ peter/nessages

copy /term/p (copies console to printer)

50

copy /d0/cat /dO/animals/cat -s #32k
Ready DESTI NATION, hit C to continue: c
Ready SOURCE, hit C to continue: c
Ready DESTI NATION, hit C to continue:c

Name

DATE — Display system date and time
Synopsis

date[t]
Description

This command will display the current system date, and if the “t” option is given, the current system
time.

Examples

Name

date t
date t >/p (Qutput is redirected to printer)
0S9: setinme

YY/ MM DD HH: MM SS
TIME ? 81/04/15 14:19: 00

0S9: dat e
April 15, 1981
0S9: date t

April 15, 1981 14:20:20

DCHECK — Check Disk File Structure

Synopsis

dcheck [- opt s] devnam

Description

Itispossiblefor sectors on adisk to be marked as being allocated but in fact are not actually associated
with afile or the disk's free space. This can happen if adisk is removed from a drive while files are
still open, or if adirectory which still contains files is deleted (see Section 3.6, “Deleting Directory
Files”). Dcheck isadiagnostic that can be used to detect this condition, aswell asthe general integrity
of the directory/file linkages.

Dcheck isgiven asaparameter the name of the disk deviceto be checked. After verifying and printing
some vital file structure parameters, dcheck follows pointers down the disk's file system tree to all
directories and files on the disk. As it does s0, it verifies the integrity of the file descriptor sectors,
reports any discrepancies in the directory/file linkages, and builds a sector allocation map from the
segment list associated with each file. If any file descriptor sectors (FDs) describe a segment with a
cluster not within the file structure of the disk, a message is reported like:

51

*** Bad FD segnment ($xxxxxx-$yyyyyy) for file: pathlist

This indicates that a segment starting at sector xxxxxx and ending at sector yyyyyy cannot really be
on this disk. Because there is a good chance the entire FD is bad if any of it's segment descriptors are
bad, the allocation map is not updated for corrupt FDs.

While building the allocation map, dcheck also makes sure that each disk cluster appears only once
and only once in the file structure. If this condition is detected, dcheck will display a message like:

Cluster $xxxxxx was previously allocated

This message indicates that cluster xxxxxx has been found at least once before in the file structure.
The message may be printed more than once if a cluster appears in a segment in more than onefile.

The newly created allocation map is then compared to the allocation map stored on the disk, and any
differences are reported in messages like:

Cluster $xxxxxx in allocation map but not in file structure
Cluster $xxxxxx in file structure but not in allocation map

The first message indicates sector number xxxxxx (hexadecimal) was found not to be part of the file
system, but was marked as allocated in the disk's allocation map. In addition to the causes mentioned
inthefirst paragraph, some sectors may have been excluded from the allocation map by the FORMAT
program because they were defective or they may be the last few sectors of the disk, the sum of which
was too small to comprise a cluster.

The second message indicates that the cluster starting at sector xxxxxx is part of the file structure but
isnot marked as allocated in the disk's allocation map. It is possible that this cluster may be allocated
to another file later, overwriting the contents of the cluster with data from the newly allocated file.
Any clusters that have been reported as “ previoudly allocated” by dcheck as described above surely
have this problem.

Available dcheck options are:

-w=pat h pathlist to directory for work files

-p print pathlists for questionable clusters
-m save alocation map work files

-b suppress listing of unused clusters

-S display count of files and directories only
-0 print dcheck's valid options

The“-s" option causes dcheck to display a count of files and directories only; only FDs are checked
for validity. The “-b” option suppresses listing of clusters allocated but not in file structure. The “-p”
option causes dcheck to make a second pass through the file structure printing the pathlists for any
clusters that dcheck finds as “already allocated” or “in file structure but not in allocation map”. The
“-w=" option tells dcheck where to locateit's allocation map work file(s). The pathlist specified must
be a FULL pathlist to a directory. The directory “/D0" is used is used if “-w” is not specified. It is
recommended that this pathlist NOT be located on the disk being dchecked if the disk's file structure
integrity isin doubt.

Dcheck buildsitsdisk allocation mapin afilecalled pat hl i st [IDCHECKppO, wherepat hl i st is
as specified by the“-w=" option and pp is the process number in hexadecimal. Each bit in this bitmap
file corresponds to a cluster of sectors on the disk. If the “-p” option appears on the command line,
dcheck creates a second bitmap file (pat hl i st /[DCHECKpp1l) that has a hit set for each cluster
dcheck finds as “previously alocated” or “in file structure but not in alocation map” while building

52

the allocation map. Dcheck then makes another pass through the directory structure to determine the
pathlists for these questionable clusters. These bitmap work files may be saved by specifying the “-
m” option on the command line.

Restrictions

For best results, dcheck should have exclusive access to the disk being checked. Otherwise dcheck
may be fooled if the disk allocation map changes whileit is building its bitmap file from the changing
file structure. Dcheck cannot process disks with adirectory depth greater than 39 levels.

For moreinformation see: Section 3.11, “Physical File Organization”, Section 3.6, “ Deleting Directory
Files’, format, 6.1 of OS-9 Systems Programmer's Manual

Examples

0S9: dcheck /d2 (workfile is on /DO)

Vol une - 'My systemdisk' on device /d2

$009A bytes in allocation map

1 sector per cluster

$0004D0 total sectors on nedia

Sect or $000002 is start of root directory FD

$0010 sectors used for id, allocation map and root directory
Buil ding allocation map work file..

Checking allocation nap file..

"My systemdisk' file structure is intact
1 directory
2 files

0S9: dcheck -nmpw=/d2 /dO

Vol une - ' Systemdi sk' on device /dO

$0046 bytes in allocation map

1 sector per cluster

$00022A total sectors on nedia

Sect or $000002 is start of root directory FD

$0010 sectors used for id, allocation map and root directory
Buil ding allocation map work file..

Cluster $00040 was previously allocated

*** Bad FD segnent ($111111-$23A6F0) for file: /dO/test/junky.file
Checking allocation nap file..

Cluster $000038 in file structure but not in allocation map
Cluster $00003B in file structure but not in allocation map
Cluster $0001B9 in allocation map but not in file structure
Cluster $0001BB in allocation map but not in file structure

Pat hl i sts for questionable clusters:
Cl uster $000038 in path: /dO/OS9boot
Cl uster $00003B in path: /d0/ OS9boot
Cl uster $000040 in path: /d0/OS9boot
Cluster $000040 in path: /dO/test/double.file

1 previously allocated clusters found

2 clusters in file structure but not in allocation nap
2 clusters in allocation nap but not in file structure
1 bad file descriptor sector

53

"Systemdisk' file structure is not intact

5 directories
25 files

Name
DEBUG — Interactive Debugger
Editor/Assembler/Debugger
Synopsis
debug

Description

Interactive Debugger.

Command Summary

[SPACHexpr essi on

.expr essi on

=expr essi on

ENTER]

‘register

:register expr essi on
E module-name

G

Gexpression

L module-name
B
B expressi on
K
K expressi on

M expressi onl
expr essi on2

C expressionl
expr essi on2
S expressi onl

expressi on2
$ command

Q

Name
DEL — Delete afile

Evaluate; display in hexadecimal and decimal form
Display dot address and contents
Restore last dot address; display address and contents

set dot toresult of expr essi on; display addressand
contents

Set memory at dot to result of expr essi on
Decrement dot; display address and contents
Increment dot; display address and contents
Display al registers contents

Display the specified register's contents

Set register to the result of expr essi on
Prepare for execution

Go to the program

Goto the program at the address specified by the result
of expressi on

Link to the module named; display address

Display all breakpoints

Set a breakpoint at the result of the expr essi on
Kill all breakpoints

Kill the breakpoint a address specified by

expressi on
Display memory dump in tabular form
Clear and test memory

Search memory for pattern

Call OS-9 shell with optional command
Quit (exit) Debug

Synopsis
del [-x]path{path}[-x]

Description
This command is used to delete the file(s) specified by the pathlist(s). The user must have write
permission for the file(s). Directory files cannot be deleted unless their type is changed to non-
directory: see the attr command description.

If the -x option appears, the current execution directory is assumed.

For more information see: Section 3.6, “Deleting Directory Files’, Section 3.9.1, “Examining and
Changing File Attributes”

Examples

del test _program ol d_test_ program
del /D1/ nunber_five
0s9:dir /D1

Directory of /Dl 14:29: 46
nyfile newfile

0S9: del / D1/ newfile
0S9: dir /D1

Directory of /Dl 14:30: 37
nyfile

0S9: del myprog -x
0S9: del -x CVDS. SUBDI R/ file

Name
DELDIR — Delete All FilesIn a Directory System

Synopsis
del dir directory nane

Description

This command is a convenient alternative to manually deleting directories and filesthey contain. It is
only used when all filesin the directory system are to be deleted.

When deldir isrun, it prints a prompt message like this:

0s9: del dir OLDFI LES
Del eting directory file.
List directory, delete directory, or quit ? (1/d/q)

An“I” response will cause adir e command to be run so you can have an opportunity to see the files
in the directory before they are deleted.

A “d” response will initiate the process of deleting files.

55

A “q" response will abort the command before action is taken.

The directory to be deleted may include directory files, which may themselvesinclude directory files,
etc. Inthiscase, deldir operatesrecursively (e.g., it callsitself) soall lower-level directoriesare deleted
aswell. In this case the lower-level directories are processed first.

Y ou must have correct access permission to delete all files and directories encountered. If not, deldir
will abort upon encountering the first file for which you do not have write permission.

The deldir command automatically calsthe dir and attr commands, so they both must reside in the
current execution directory.

Name
DEV S — Show device table entries
Synopsis
devs
Description
Devs displays a list of the system's device table. The device table contains an entry for each active
device known to OS-9. devs does not display information for uninitialized devices. The devs display
header lists the system name, the OS-9 version number, and the maximum number of devices allowed
in the devicetable.
Each linein the devs display contains five fields:
Name Description
Device Name of the device descriptor
Driver Name of the device driver
File Mgr Name of the file manager
Data Ptr Address of the device driver's static storage
Links Device use count
Note
Each time auser executesachd to an RBF device, the use count of that deviceisincremented
by one. Consequently, the Links field may be artificially high.
Name

DIR — Display the names of files contained in a directory
Synopsis

dir[e][x][path]
Description

Displaysaformatted list of filesnamesin adirectory file on. the standard output path. If no parameters
aregiven, the current data directory isshown. If the“x” option isgiven, the current execution directory
isshown. If apathlist of adirectory fileis given, it is shown.

If the “€” option is included, each file's entire description is displayed: size, address, owner,
permissions, date and time of last modification.

56

For more information see: Section 1.1.3, “A Quick Introduction to the Use of the Keyboard and
Disks’, Section 3.5, “ Creating and Using Directories’, and Section 3.9.1, “Examining and Changing

File Attributes’

Examples

dir

dir x

dir x e

dir

dir newstuff

dir e test_prograns

Name

(di spl ay
(di spl ay
(di spl ay
(di spl ay
(di spl ay

(di spl ay

DISASM — OS-9 Module Disassembler

Synopsis

data directory)

execution directory)

entire description of execution dir)
parent of working data directory)
newst uff directory)

entire description of test_ prograns)

di sasm[[-mnodul e nane] |fi | enane] [options]

Description

Disasm was written to hack apart OS-9 system modules, command modul es, file managers and device
drivers/descriptors either from memory or disk. Unlike most other disassemblers, disasm isatwo pass
disassembler, creating output using only referenced labels. This output can be redirected to afile and
(after modificationsif desired) then re-assembled.

Disasm provides completely commented disassembly of Device Descriptors... very useful for building

a customized boot file.
Options

disassm -m nodul e nane

disasmpat hl i st/ nodul e
name

other options:

will link to module in memory - if not found,will load module
from exec directory and then link to it... after disassembly, it
will attempt to unlink the module.

will ‘'read’ the module from the specified path without loading.

o = display line number,address,object code & source code...
useful for hard to crack modules with data embedded in the
middle.

x = look for module in execution directory.

Any combination of optionsis allowed (upper or lower case) but they must immediately follow the '-'
and there must be no spaces separating the options.

0S-9 Level | Users

By changing relative address $17 from $64 to $30 will cause the output source to reference /d0/defs

instead of /dd/defs.

57

Also, if you are not using a driver which supports Level |1 display codes, you must change relative
address $15 from 01 to 00 to avoid problemsin the event of an error message being printed out.

Name
DISPLAY — Display Converted Characters

Synopsis
di spl ay hex {hex}

Description
Display reads one or more hexadecima numbers given as parameters, converts them to ASCII
characters, and writes them to the standard output. It is commonly used to send special characters

(such as cursor and screen control codes) to terminals and other 1/0 devices.

Examples

di splay 0C 1F 02 7F

di splay 15 >/p (sends “formfeed” to printer)

0S9: display 41 42 43 44 45 46
ABCDEF

Name
DMODE — Disk descriptor Editor

Synopsis
dnode [devi cename |-f i | ename] [options]
Description

This new version allows any combination of upper or lower case options to be specified.

Also, current parameters are displayed with a“$" preceding to remind the user that the values are
hexadecimal.

Options may be prefixed with a“$". It is simply ignored.
Examples

Typical dmode outpuit:

0S9: dnode /dd {enter}

drv=$00 st p=%$00 typ=%$80 dns=$01 cyl =$0334 si d=$06
vfy=$00 sct=%$0021 to0s=$0021 ilv=3$00 sas=$20

Now, let's say we want to change the number of cylinders this descripter shows. The following

command lineswould al be valid and accepted by the new dmode:

0S9: dnopde /dd CYL=276
-or- dnode /dd Cyl =$276

58

-or- dnode /dd cYL=276

Lastly, you may now specify either “TOS’ or “TOS” to setup the number of sectors per track in track
zero. Example:

0S9: dnpde /dd tos=21
-or- dnpde /dd t0s=21

Name
DSAVE — Generate procedure file to copy files

Synopsis
dsave[-opts][devnane][path]

Description

Dsaveisused to backup or copy all filesin one or more directories. It is unlike most other commands
in that it does NOT directly affect the system, rather, it generates a procedure file which is executed
later to actually do the work.

When dsave is executed, it writes copy commands to standard output to copy files from the current
data directory on devnane (the default is /DO) to the directory specified by pat h. If pat h does
not appear, the copy is performed to the current data directory at the time the dsave procedurefileis
executed. If dsave encountersadirectory file, it will automatically include makdir and chd commands
in the output before generating copy commands for files in the subdirectory. Since dsave isrecursive
in operation, the procedure file will exactly replicate all levels of thefile system from the current data
directory downward (such a section of the file system is called a“ subtree”).

If the current working directory happens to be the root directory of the disk, dsave will create a
procedure file that will backup the entire disk file by file. Thisis useful when it is necessary to copy
many files from different format disks, or from floppy disk to a hard disk.

Available dsave options are:

-b make output disk a system disk by using source disk's OS9Boot file,.
if present.

-b=pat h make output disk asystem disk using pat h as source for the OS9Boot
file

-i indent for directory levels

-L do not process directories below the current level
-m do not include makdir commands in procedure file
-si nt eger set copy size parameter toi nt eger K

For more information see: Section 2.3, “ Some Common Command Formats’

Examples

Example which copies al fileson “d2” to “d1”:

chd /d2 (select “fronf directory)
dsave /d2 >/ d0/ nakecopy (make procedure file “makecopy”)
chd /d1 (select “to” directory)

/ d0/ makcopy (run procedure file)

chd /dO/ MYFI LES/ STUFF

59

dsave -is32 /d0 /d1l/ BACKUP/ STUFF >saver
/ dO/ MYFI LES/ STUFF/ saver

Name

DUMP — Formatted File Data Dump in Hexadecimal and ASCI|
Synopsis

dunp[path]
Description

This command produces aformatted display of the physical data contents of the path specified which
may be a mass storage file or any other 1/0O device. If a pathlist is omitted, the standard input path
is used. The output is written to standard output. This command is commonly used to examine the
contents of non-text files.

The datais displayed 16 bytes per line in both hexadecimal and ASCI| character format. Data bytes
that have non-displayable values are represented by periods in the character area.

Theaddressesdisplayed on thedump arerel ativeto the beginning of thefile. Because memory modules
are position-independent and stored on files exactly asthey exist in memory, the addresses shown on
the dump correspond to the relative load addresses of memory-module files.

Examples

DUWVP (di spl ay keyboard input in hex)
DUWP nyfile > P (dunmp nyfile to printer)
DUMP shortfile

Sample Output

Addr 01 23 45 67 89 AB CD EF 0246 8ACE

0000 87CD 0038 002A P181 2800 2E00 3103 FFEO .M 8.*q.(...1..
0010 0418 0000 0100 0101 0001 1808 180D 1BO4

0020 0117 0311 0807 1500 002A 5445 S2CD 5343 * TERMSC
0030 C641 4349 CILOE 529E FACI A R
N N N
starting data bytes in hexadeci nal data bytes in
address f or mat ASCI | format
Name
ECHO — Echo text to output path
Synopsis
echo t ext
Description

Thiscommand echoesitsargument to the standard output path. It istypically used to generate messages
in shell procedure files or to send an initialization character sequence to aterminal. The text should
not include any of the punctuation characters used by the shell.

60

Examples

echo >/ T2 Hello John how s it going & (echo to T2)
echo >/term** warning ** di sk about to be scratched 1

echo >/p Listing of Transaction File; list trans >/p

0S9: echo Here is an inportant nessage!
Here is an inportant nessage!

Name

EDIT — Text editor
Editor/Assembler/Debugger

Synopsis
edit {inputfile} {output}
Description

The Macro Text Editor is a powerful and easy to use text preparation system. It is commonly used
to create source programs or other kinds of text files used within the OS-9 system. The editor has
many features that make editing faster and more convenient. For example, most commands involve
only one or two keystrokes.

The editor iskept in afile called “ edit”, which should be present in your system's CMDS (execution)
directory. To run the editor type:

0S9: edit [RETURN

The editor should load and start. When it printsthe “E:” prompt, it is ready to accept acommand. To
quit, type a“Q” followed by a carriage return as follows:

E q RETURN

Name
EX — Execute program as overlay

Synopsis
ex nodul e name [nodifiers][paraneters]
Description

Thisashell built-in command that causes the process executing the shell to start execution of another
program. It permits a transition from the shell to another program without creating another process,
thus conserving system memory.

This command is often used when the shell is called from another program to execute a specific
program, after which the shell is not needed. For instance, applications which only use basic09 need
not waste memory space on shell.

The ex command should always be the last command on a shell input line because any command line
following will never be processed.

61

NOTE: Since thisisabuilt-in shell command, it does not appear in the CMDS directory.

For more information see: Section 4.5, “Built-in Shell Commands and Options’, Section 4.6, “ Shell
Procedure Files”, Section 4.9, “ Setting Up Timesharing System Procedure Files’

Examples

Name

ex BASI C09

tsmon /t1& tsnon /t2& ex tsnon /term

EXBIN — Convert S-Record To Binary File

Synopsis

exbi n pat h2 pat hl

Description

S-Record files are a type of text file that contains records that represent binary data in hexadecimal
character form. This Motorola-standard format is often directly accepted by commercia PROM
programmers, emulators, logic analyzers and similar devices that are interfaced RS-232 interfaces. It
can also be useful for transmitting files over data links that can only handle character-type data; or to
convert OS-9 assembler or compiler-generated programs to load on non-OS-9 systems.

“Pat h1” isassumed to be an S-Record format text file which exbin converts to pure binary form on
anew file called “pat h2”. The load addresses of each data record must describe continguous data
in ascending order.

Exbin does not generate or check for the proper OS-9 module headers or CRC check value required
to actually load the binary file. The ident or verify commands can be used to check the validity of
the modules if they are to be loaded or run.

Example

exbi n program S1 cnds/ program

Name
EXMODE — Examine or Change Device Initialization Mode
OS9Level Two

Synopsis

exnode devnane [ar gl i st]

Description

exmode is an enhanced verison of the xmode utility, and is useful for changing initialization
parameters specific to CoCo 3 window descriptors and enhanced ACIA device descriptors.

Exmode is very similar to the tmode command. Tmode only operates on open paths so its effect
is temporary. Exmode actually updates the device descriptor so the change persists as long as the
computer is running, even if paths to the device are repetitively opened and closed. If exmodeis used
to change parameter(s) and the cobbler program is used to make a new system disk, the changed
parameter will be permanently reflected on the new system disk.

62

Exmode requires a device name to be given. If no arguments are given, the present values for each
parameter are displayed, otherwise, the parameter(s) given in the argument list are processed. Any
number of parameters can be given, and are separated by spaces or commeas.

Exmode Parameter Names

upc

-upc
bsb

-bsb

bsl

-bsl

-pause
null=n

pag=n
bsp=h
bse=h
del=h
bell=h
eor=h
eof=h
type=h

reprint=h
dup=h

psc=h
abort=h

Upper case only. Lower case characters are automatically converted to
upper case.

Upper case and lower case characters permitted (default).

Erase on backspace: backspace characters echoed as a backspace-space-
backspace sequence (default).

no erase on backspace: echoes single backspace only

Backspace over line: lines are “deleted” by sending backspace-space-
backspace sequences to erase the same line (for video terminals)
(defaullt).

No backspace over line: lines are “deleted” by printing a new line
sequence (for hard-copy terminals). echo Input characters “echoed”
back to terminal (default)

No echo

Auto line feed on: line feeds automatically echoed to terminal on input
and output carriage returns (default).

Auto line feed off.

Screen pause on: output suspended upon full screen. See “pag”
parameter for definition of screen size. Output can be resumed by typing

any key.
Screen pause mode off.

Set null count: number of null ($00) characterstransmitted after carriage
returns for return delay. The number is decimal, default = 0.

Set video display page length to n (decimal) lines. Used for “pause”
mode, see above.

Set input backspace character. Numeric value of character in
hexadecimal. Default = 08.

Set output backspace character. Numeric value of character in
hexadecimal. Default = 08.

Set input delete line character. Numeric value of character in
hexadecimal. Default = 18.

Set bell (alert) output character. Numeric value of character in
hexadecimal. Default = 07

Set end-of-record (carriage return) input character. Numeric value of
character in hexadecimal. Default = 0D

Set end-of-file input character. Numeric value of character in
hexadecimal. Default 1B.

ACIA initidization value: sets parity, word size, etc. Vaue in
hexadecimal. Default 15

Reprint line character. Numeric value of character in hexadecimal.

Duplicate last input line character. Numeric value of character in
hexadecimal.

Pause character. Numeric value of character in hexadecimal.

Abort character (normally [Control]+HC]). Numeric value of character in
hexadecimal.

63

quit=h Quit character (normally [Control[+[E]). Numeric value of character in
hexadecimal.

baud=d Set baud rate for software-controllable interface. Numeric code for baud
rate: 0=110 1=300 2=600 3=1200 4=2400 5=4800 6=9600 7=19200

Examples

exnode / TERM -upc | f null =4 bse=1F pause
exnode /Tl pag=24 pause bsl -echo bsp=8 bsl=C

exnode /P baud=3 -if

Name
FORMAT — Initiadize disk media

Synopsis
f or mat devnane

Description

This command is used to physically initialize, verify, and establish an initial file structure on a disk.
All disks must be formatted before they can be used on an OS-9 system.

NOTE: If the diskette is to be used as a system disk, OS9gen or cobbler must be run to create the
bootstrap after the disk has been formatted.

The following options are used:

R = inhibit ready prompt

:number: = number of sector interleave value (decimal)
"name" = disk name (32 character maximum)

The formatting process works as follows:

1. Thedisk surfaceis physically initialized and sectored.

2. Each sector isread back and verified. If the sector failsto verify after several attempts, the offending
sector is excluded from the initial free space on the disk. As the verification is performed, track
numbers are displayed on the standard output device.

3. Thedisk allocation map, root directory, and identification sector are written to the first few sectors
of track zero. These sectors cannot be defective.

If not provided as an option, format will prompt for a disk volume name, which can be up to 32
characters long and may include spaces or punctuation. This hame can later be displayed using the
free command.

For more information see: Section 3.11, “Physical File Organization”

Name
FREE — Display free space remaining on mass-storage device

Synopsis

free devname

Description

Thiscommand displaysthe number of unused 256-byte sectors on adevice which are availablefor new
files or for expanding existing files. The device name given must be that of a mass-storage multifile
device. Free also displays the disk's name, creation date, and cluster size.

Data sectors are alocated in groups called “clusters’. The number of sectors per cluster depends on
the storage capacity and physical characteristics of the specific device. This meansthat small amounts
of free space may not be divisibleinto asmany files. For example, if agiven disk system uses 8 sectors
per cluster, and afree command shows 32 sectors free, a maximum of four new files could be created
even if each has only one cluster.

For more information see: Section 3.11, “Physical File Organization”

Examples

0s9: free

BACKUP DATA DI SK created on: 80/06/12
Capacity: 1,232 sectors (1l-sector clusters)
1,020 free sectors, |largest block 935 sectors

0S9: free /D1

0S-9 Docunentation Disk created on: 81/04/13
Capacity: 1,232 sectors (1l-sector clusters)

568 Free sectors, |argest block 440 sectors

Name
GO51 — The 51 Column by 24 Line Video Display

Synopsis
go51
Description

An dternative video screen device driver, which provides a 51 column by 24 line display with upper
and lower case character sets, can be incorporated into OS-9 with the command:

b1

This command replaces the normal text screen driver with one that uses high resolution graphics to
“draw” the characters. Asthere are fewer pixels (dots) per character in this mode more characters can
be displayed on the screen, albeit with some loss of character definition.

Note, however, that the use of a high resolution graphics page means that an extra 6K bytes will be
needed in thismode. This extramemory requirement isnot normally aproblem but in memory-critical
applications, such asthe C and Pascal compilers, the user can simply avoid the use of go51.

Thismode of display hasaset of escape sequences (commands) to emulate commercial dataterminals.
In addition to the video screen driver, go51 provides a new keyboard driver which features auto-
repeat. The keyboard code allocation is the same as described in section Section 2.4.3, “Control Key
Functions” and Appendix C, Key Definitions With Hexadecimal Values

The GO51 Display Functions

Like the normal 32 by 16 video display functions described in Appendix B, VDG Display System
Functions the 51 by 24 mode provides many built in facilities to control the display. These functions
are activated by the use of the various escape sequences and control characters described below:

65

Escape Sequence (Hex) Name/Function

1B41XY CURSOR XY - move cursor to column X(0-50) and Y (0-23)
where X and Y are single byte values.

1B 42 CLEAR EOL - clear from cursor to the end of line. Cursor
position remains unchanged.

1B 43 CURSOR RIGHT - move cursor right by one character
position.

1B 44 CURSOR UP - move cursor up by oneline.

1B 45 CURSOR DOWN - move cursor down one line.

1B 46 REVERSE ON - turn reverse field on.

1B 47 REVERSE OFF - turn reverse field off.

1B 48 UNDERLINE ON - turn underline on.

1B 49 UNDERLINE OFF - turn underline off.

1B 4A CLEAR EOS - clear from cursor to end of screen. Cursor

position remains unchanged.

Control Character Name/Function

(Hex)

07 BELL - generates a short audible tone.

08 BACKSPACE (CURSOR LEFT) - moves cursor left one

character position.

0A LINE FEED - move cursor down by one line.

0B CURSOR HOME - move cursor to home position 0,0 (top | eft).

0oC CLEAR SCREEN - clears the screen and home cursor.
Note

The GO51 device driver is only available on Dragon Computers.

Name
HEL P — Displays the usage and syntax of OS-9 commands.
OS9Leve Two

Synopsis

hel p {conmand}

Description

Notes

Provide as argument the command for which you want syntax help. Include as many command names
inonehelp lineasyou wish. The proper form and syntax appearsfor each valid command you include.

To use help, first copy Cnds. hp from the SYS directory of the CONFIG/BOOT Diskette to the SYS
directory of your system diskette. Next, copy help from the CVDS directory of the CONFIG/BOOT
Diskette to the CVDS directory of your system diskette as follows:

Procedure for one disk drive:

1. With OS-9 booted and the system diskette in your drive, type:

66

LOAD COPY [ENTER

2. Replace the system diskete with the CONFIG/BOOT Diskette and type:

COPY / DO/ SYS/ C\VDS. HP / DO/ SYS/ CVDS. HP - S #30K
3. Exchange the two diskettes as requested by the screen prompts until the process is compl ete.

4. Again, place the CONFIG/BOOT Diskette in the drive, and type:

COPY / DO/ CVDS/ hel p / DO/ CNDS/ hel p - S #30K
5. Swap diskettes as requested until the process is compl ete.
Procedure for two disk drives

1. With OS-9 booted, place the CONFIG/BOOT Diskette in Drive 1. Be sure the system diskette is
in Drive 0.

2. Type:

COPY / D1/ SYS/ CMDS. HP / DO/ SYS/ CMVDS. HP

3. When thefirst copy is complete, type:

COPY / D1/ CMDS/ hel p / DO/ CVDS/ hel p

Cnds. hp isadatafile, not atext file, and you cannot successfully display it on your screen or edit it
with a standard text editor. It contains help for standard OS-9 commands.

Help displays the form and syntax of the specified command. If you use a non-standard command
name, a screen display tells you that help is not available for that command.

Examples:
HELP BACKUP

BACKUP [e][s][-v][dev][dev]
Copies all data from one device to anot her

HELP ME
ME Hel p not avail abl e

HELP
HELP [command name][...]

Name
IDENT — Print OS-9 module identification

Synopsis
ident [-opts]path[-opts]
Description

This command is used to display header information from OS-9 memory modules. | dent displaysthe
module size, CRC bytes (with verification), and for program and device driver modules, the execution

67

offset and the permanent storage requirement bytes. Ident will print and interpret the type/language
and attribute/revision bytes. In addition, ident displays the byte immediately following the module
name since most Microware-supplied modules set this byte to indicate the module edition.

Ident will display al modules contained in adisk file. If the “-m” option appears, pat h is assumed
to be amodule in memory.

If the“-v” option is specified, the module CRC is not verified.

The“-x" option implies the pathlist beginsin the execution directory.

The*“-s” option causesident to display the. following module information on asingle line:
« Edition byte (first byte after module name)

e Type/Language byte

* Module CRC

« A “. if the CRC verifies correctly, “? if incorrect. (Ident will leave this field blank if the “-v”
option appears.)

* Module name

Examples

0S9: ident -mident

Header for: |dent Modul e name

Modul e size: $06A5 #1701 Modul e si ze

Mbdul e CRC: $1CE78A (Good) Good or Bad

Hdr parity: $8B Header parity

Exec. off: $0222 #546 Execution of f set

Dat a si ze: $0CAL #3233 Per manent storage requirenent
Edition: $05 #5 First byte after nodul e nane
Ty/La At/ Rv: $11 $81 Typel/ Language Attribute/ Revision
Prog nod, 6809 obj, re-en Modul e type, Language, Attribute

0S9: ident /dO/os9boot -s
1 $C0 $A366DC . (OS9p2
83 $C0 $7FC336 . Init
1 $11 $39BA94 . SysCo
1 $C1 $402573 . 1QvaAn
3 $D1 $EE937A . REF
82 $F1 $526268 . DO
82 $F1 $D65245 . D1
82 $F1 $E32FFE . D2
1 $D1 $F944D7 . SCF
2 $E1 $F9FE37 . ACI A
83 $F1 $765270 . TERM
83 $F1 $B4396C . T1
83 $F1 $63B73B . T2
83 $F1 $0F9B78 . T3
83 $F1 $FB3EB9 . T4
83 $F1 $D6DDOA . T5
3 $E1 $3EE015 . PIA
83 $F1 $12A43B . P
2 $D1 $BBCLEE . Pi peMan

68

2 $E1 $5B2B56 . Pi per
80 $F1 $CCO6AF . Pipe
2 $C1 $248B2C . dock

N N NN

N

|

|] | | Modul e nane

|] | CRC check “ " if -v, “.” if OK “?" if bad
|] CRC val ue

| Typel/ Language byte

Edition byte (first byte after nane)

Name

KILL — Abort a process
Synopsis

kill proclD
Description

This shell “built in” command sends an “abort” signal to the process having the process ID number
specified. The processto be aborted must havethe same user | D asthe user that executed the command.
The procs command can be used to obtain the process D numbers.

NOTE: If a process is waiting for 1/0, it may not die until it completes the current 1/O operation,
therefore, if you Kill a process and the procs command showsiit still exists, it is probably waiting for
receive aline of datafrom aterminal before it can die. Since thisis abuilt-in shell command, it does
not appear in the CMDS directory. For more information see: Section 4.5, “Built-in Shell Commands
and Options’, Section 5.2, “Process States’, procs

Examples
kill 5
kill 22
0OS9: procs

Name

User # Id pty state Mem Primary nodul e

20 2 0 active 2 Shell <TERM
20 1 0 waiting 1 Sysgo <TERM
20 3 0 sleeping 20 Copy <TERM

0s9: kill 3
0OS9: procs

User # Id pty state Mem Primary nodul e

20 2 0 active 2 Shell <TERM
20 1 0 waiting 1 Sysgo <TERM

0S9:

LINK — Link module into memory

69

Synopsis
I i nk menory nodul e nane
Description

This command is used to “lock” a previously loaded module into memory. The link count of the
module specified is incremented by one each time it is “linked”. The unlink command is used to
“unlock” the module when it is no longer needed.

For more information see: Section 5.4, “Basic Memory Management Functions’, Section 5.4.1,
“Loading Program Modules Into Memory”, Section 5.4.2, “Loading Multiple Programs’,
Section 5.4.3, “Memory Fragmentation”

Examples

0S9: LINK edit
0OS9: LI NK nmyprogram

Name
LIST — List the contents of atext file

Synopsis
list path{path}
Description

This command copies text lines from the path(s) given as parameters to the standard output path.
The program terminates upon reaching the end-of-file of the last input path. If more than one path is
specified, the first path will be copied to standard output, the second path will be copied next, etc.

This command is most commonly used to examine or print text files.

For more information see: Section 2.3, “Some Common Command Formats’, Section 3.10.2, “ Text
Files’

Examples

list /dO/startup >/P & (output is redirected to printer)
list /D1/user5/docunent /dO/nyfile /dO/Bob/text

list /TERM >/p (copy keyboard to printer - use
“escape” key to term nate input)

0S9: build animals
cat

cow

dog

el ephant

bird

fish

ENTER

ECRECRESEESEESREVEEN]

70

0S9: list animals
cat

cow

dog

el ephant

bird

fish

Name
LOAD — Load module(s) from file into memory

Synopsis
| oad pat h
Description
The path specified is opened and one or more modules is read from it and loaded into memory. The

names of the modules are added to the module directory. If amoduleisloaded that has the same name
and type as amodule already in memory, the module having the highest revision level is kept.

For more information see: Section 3.10.4, “Executable Program Module Files’, Section 5.4.1,
“Loading Program Modules Into Memory”, Section 5.4.2, “Loading Multiple Programs”

Examples

load new_program

0S9: ndi r
Modul e Directory at 13:36:47
DCB4 DO D1 D2 D3
0s9P2 INT 0s9 | OVAN REF
SCF ACI A TERM T1 T2
T3 P Pl A CDS H1
Sysgo d ock Shel | Tsnon Copy
Mdi r
0S9: | oad edit
0S9: ndi r
Modul e Directory at 13:37:14

DCB4 DO D1 D2 D3
0s9P2 INT 0s9 | OVAN REF
SCF ACI A TERM T1 T2
T3 P Pl A CDS H1
Sysgo d ock Shel | Tsnon Copy
Mli r ED T

Name
LOGIN — Timesharing System Log-In

Synopsis
login

71

Description

Login is used in timesharing systems to provide log-in security. It is automatically called by the
timesharing monitor tsmon, or can be used after initial log-in to change aterminal's user.

Login requests auser name and password, which ischecked against avalidation file. If theinformation
is correct, the user's system priority, user 1D, and working directories are set up according to
information stored in thefile, and theinitial program specified in the password fileis executed (usually
shell). If the user cannot supply a correct user name and password after three attempts, the process
is aborted. The validation file is called PASSWORD and must be present in the directory / d0/ SYS.
The file contains one or more variable-length text records, one for each user name. Each record has
the following fields, which are delimited by commas:

1. User name (up to 32 characters, may include spaces). If thisfield is empty, any name will match.

2. Password (up to 32 characters, may include spaces) If thisfield is omitted, no password isrequired
by the specific use.

3. User index (ID) number (from 0 to 65535, 0 is superuser). This number is used by the file security
system and as the system-wide user ID to identify all processes initiated by the user. The system
manager should assign a unique ID to each potential user. (See Section 3.9, “The File Security

System”)

4. Initial process (CPU time) priority: 1 - 255 (see Section 5.2, “Process States”)

5. Pathlist of initial execution directory (usualy / d0/ CVDS)

6. Pathlist of initial data directory (specific user's directory)

7. Name of initial program to execute (usually shell). NOTE: Thisis not a shell command line.

Here's asample validation file:

superuser, secret, 0, 255,., ., shell

st eve, open sesane, 3, 128, .,/d1/ STEVE, shel |

sally, qwerty, 10, 100, / dO/ BUSI NESS, / d1/ LETTERS, wor dpr ocessor
bob, , 4, 128, .,/ d1/ BOB, Basi c09

To use the login command, enter:

login

Thiswill cause promptsfor the user'sname and (optionally) password to be displayed, and if answered
correctly, the user is logged into the system. L ogin initializes the user number, working execution
directory, working data directory, and executestheinitial program specified by the password file. The
date, time and process number (which is not the same as the user 1D, see Section 5.3, “Creation of
New Processes’) are also displayed.

Note: if the shell from which login was called will not be needed again, it may be discarded by using
the ex command to start the login command. For example:
ex login

Logging Off the System

To log off the system, the initial program specified in the password file must be terminated. For most
programs (including shell) this may be done by typing an end of file character (escape) as the first
character on aline.

72

Displaying a “Message-of-the-Day”

If desired, afile named not d appearing in the SY S directory will cause login to display it's contents
on the user'sterminal after successful login. Thisfileis not required for login to operate.

For more information see: tsmon, Section 4.9, “ Setting Up Timesharing System Procedure Files’,
Section 3.9, “The File Security System”, Section 5.3, “Creation of New Processes’

Examples

0S9: login
0S-9 Level 1 Tinesharing System Version 1.2 82/12/04 13:02: 22

User nanme?: superuser
Password: secret

Process #07 | ogged 81/12/04 13:03: 00

Vel cone!
Name
MAKDIR — Create directory file
Synopsis
makdi r path
Description

Createsanew directory file acdording to the pathlist given. The pathlist must refer to aparent directory
for which the user has write permission.

The new directory isinitialized and initially does not contain files except for the. and . . pointers
toits parent directory and itself, respectively (see Section 3.8.3, “ Anonymous Directory Names'). All
access permissions are enabled (except sharable).

It is customary (but not mandatory) to capitalize directory names.

For moreinformation see: Section 3.4, “Multifile DevicesAnd Directory Files’, Section 3.5, “ Creating
and Using Directories’, Section 3.6, “ Deleting Directory Files’, Section 3.8.3, “ Anonymous Directory
Names’, Section 3.10.5, “Directory Files’

Examples

makdi r /dl/ STEVE/ PROJECT

makdi r DATAFI LES

makdi r ../ SAVEFI LES

Name

MDIR — Display Module Directory
Synopsis

ndir [e]

73

Description

Displaysthe present module namesin the system modul e directory, i.e., all modules currently resident
in memory. For example:

0s9: ndir

Modul e Directory at 14:44:35
Do Pi pe 0s9 Os9P2
I nit Boot DDi sk D1
KBVDI O TERM | OVan RBF
SCF SysCGo d ock Shel |
PRI NTER P Pi peMan Pi per
Mdi r

If the “€” option is given, a full listing of the physical address, size, type, revision level, reentant
attribute, user count, and name of each module is displayed. All numbers shown are in hexadecimal.

0s9: mdir e
Modul e Directory at 10:55:04

ADDR SI ZE TY RV AT UC NAME

C305 2F F1 1R DO

FO59 7EB C1 1 R 0s9

F852 4F4 C1 1 R Os9P2

FD46 2ZECO 1 R INIT

C363 798 E1 1 R 2 KBVDI O

CAFB 38 F1 1R 2 TERM
Caution

Many of the modules listed by mdir are OS-9 system modules and not executable as
programs. always check the module type code before running amoduleif you are not familiar
with it!

For more information see: Section 5.4.1, “Loading Program Modules Into Memory”

Name
MERGE — Copy and Combine Files to Standard Output

Synopsis
nmerge path{ path}

Description
This command copies multipleinput files specified by the pathlists given as parametersto the standard
output path. it is commonly used to combine several filesinto a single output file. Datais copied in
the order the pathlists are given. M er ge does no output line editing (such as automatic line feed). The

standard output is generally redirected to afile or device.

Examples

0S9: nerge filel file2 file3 file4 >conbined.file

74

0S9: merge compile.list asmlist >/printer

MFREE — Display Free System RAM

Synopsis

nfree

Description

Displays alist of which areas of memory are not presently in use and available for assignment. The
address and size of each free memory block are displayed.

In Level One systems, mfr ee showsthe address and size of each contiguous area of unassigned RAM.
The size is given as the number of 256-byte pages. This information is useful to detect and correct
memory fragmentation (see Section 5.4.3, “Memory Fragmentation”).

In Level Two systems, mfree shows the block number, physical (extended) beginning and ending
addresses, and size of each contiguous area of unassigned RAM. The sizeisgivenin number of blocks
and in K bytes. The block size is usually 2K per block for systems equipped with MC6829 MMUs,
or 4K bytes for most SS-50 bus systems. Free memory to be used for user data area need not be
contiguous because the MMU can map scattered free blocks to be logically contiguous. Since OS-9
requires 56K of physically contiguous memory to load program modules, |oad operations can fail even
if sufficient total free memory exists.

For more information see: Section 5.4, “Basic Memory Management Functions’, Section 5.4.3,
“Memory Fragmentation”

Example (Level One MFREE)

0S9: nfree

Address pages

700- 7FF 1
BOO- AEFF 164
B100- B1FF 1

Total pages free = 166

Example (Level Two MFREE)

Blk Begin End Blks Size
10 10000 10FFF 1 4K
18 18000 1DFFF 6 24K
20 20000 3FFFF 32 128K

Tot al : 39 156K

OS9GEN — Build and Link a Bootstrap File

Synopsis

75

os9gen devi ce nane

Description

OS9Gen is used to create and link the OS9Boot file required on any disk from which OS-9 isto be
bootstrapped. OS9Gen is used to add modulesto an existing boot or to create an entirely new boot file.
If an exact copy of theexisting OS9Boot fileisdesired, the cobbler command should be used instead.

The name of the device on which the OS9Boot file is to be instaled is passed to OS9Gen as
a command line parameter. OS9Gen then creates a working file called TenpBoot on the device
specified. Next it reads file names (pathlists) from its standard input, one pathlist per line. Every file
named is opened and copied to TenpBoot . Thisisrepeated until end-of-file or ablank lineisreached
on OS9Gen'sstandard input. All boot filesmust contain the OS-9 component moduleslisted in section
Section 6.1, “The OS9Boot File".

After al input files have been copied to TenpBoot , the old OS9Boot file, if present, is deleted.
TenpBoot is then renamed to OS9Boot , and its starting address and size is linked in the disk's
Identification Sector (LSN 0) for use by the OS-9 bootstrap firmware.

WARNING: Any OS9Boot file must be stored in physically contiguous sectors. Therefore, OS9Gen
isnormally used on afreshly formatted disk. If the OS9Boot fileis fragmented, OS9Gen will print
awarning message indicated the disk cannot be used to bootstrap OS-9.

Thelist of file names given to OS9Gen can be entered from a keyboard, or OS9Gen's standard input
may beredirected to atext file containing alist of file names (pathlists) . If namesare entered manually,
no prompts are given, and the end-of-file key (usually ESCAPE) or a blank line is entered after the
line containing the last pathlist.

For more information see: Chapter 6, Use of the System Disk, Section 6.1, “The OS9Boot File”,
Section 6.6, “Changing System Disks’

Examples

To manualy install aboot file on device “d1” which is an exact copy of the OS9Boot file on device
“do”:

0S9: o0s9gen /d1 (run OS9Gen)
/ d0/ os9boot (enter file to be install ed)
[ESCAPE] (enter end-of-file)

To manually install a boot file on device “d1” which is a copy of the OS9Boot file on device “d0”
with the addition of modules stored in thefiles/ dO/ t ape. dri ver and/ d2/ vi deo. dri ver:

0S9: o0s9gen /d1 (run 0S9Gen)

/ d0/ os9boot (enter main boot file nane)

/ dO/ t ape. dri ver (enter name of first file to be added)
/ d2/ vi deo. driver (enter name of second file to be added)
[ESCAPE] (enter end-of-file)

As above, but automatically by redirecting OS9Gen standard input:

0S9: build /dO/bootlist (use build to create file bootlist)

? /d0/ os9boot (enter first file nane)
? /dO/tape.driver (enter second file nane)
? /d2/video.driver (enter third file nane)
? [RETURN] (term nate build)

0S9: o0s9gen /dl </dO/bootlist (run OS9gen with redirected input)

76

Name

PRINTERR — Print Full Text Error Messages
OS9Level One

Synopsis
printerr
Description

This command replaces the basic OS-9 error printing routine (F$Perr service request) which only
prints error code numbers, with a routine the reads and displays textual error messages from the file
/ d0/ SYS/ er r msg. Printerr's effect is system-wide.

A standard error message file is supplied with OS-9. Thisfile can be edited or replaced by the system
manager. Thefileisanormal text filewith variablelength line. Each error message line beginswith the
error number code (in ASCII characters), a delimiter, and the error message text. The error messages
need not bein any particular order. Delimiters are spaces or any character numerically lower then $20.
Any line having a delimiter as its first character is considered a continuation of the previous line(s)
which permits multi-line error messages.

Warning

Oncetheprinterr command hasbeen used, it can not be undone. Onceinstalled, theprinterr
module should not be unlinked. Printerr uses the current user's stack for an 1/0 buffer, so
users are encouraged to reserve reasonably large stacks.

For more information see: Section 4.7, “Error Reporting”, Section 6.2, “ The SY S Directory”.

Examples

0S9: printerr

Name

PROCS — Display Processes
Synopsis

procs[e]
Description

Displays alist of processes running on the system. Normally only processes having the user's ID are
listed, but if the“€” optionisgiven, processes of all usersarelisted. The display isa“ snapshot” taken
at the instant the command is executed: processes can switch states rapidly, usually many times per
second.

PROCS shows the user and process ID numbers, priority, state (process status), memory size (in 256
byte pages), primary program module, and standard input path.

For more information see: Section 5.1, “Processor Time Allocation and Timeslicing”, Section 5.2,
“Process States’, Section 5.3, “Creation of New Processes’

Examples

Level One Example:

77

User# |Id pty state Mem Primary nodul e

0 2 0 active 2 Shel |
0 1 0 waiting 1 SysGo
1 3 1 waiting 2 Tsnon
1 4 1 waiting 4 Shel |
1 5 1 active 64 Basi c09

Level Two Example:

Parnt User Mem St ack
ID ID Index Pty Siz Ptr Primary Mdul e

2 1 0 255 1 $98E2 SysCo
3 2 0 255 2 $96E2 Shell
4 3 0 255 96 $94E2 Basi c09
5 4 0 255 2 $92E2 Shell
6 5 0 255 4 $03F3 Procs
7 2 0 128 48 $A0F0 Cobol
Name
PWD/PXD — Print Working Directory / Print Execution Directory
Synopsis
pwd
pxd
Description

Pwd displays a pathlist that shows the path from the root directory to the user's current data directory.
It can be used by programs to discover the actual physical location of files, or by humans who get
lost in the file system. Pxd isidentical except that is shows the pathlist of the user's current execution
directory.

Examples

0S9: chd / D1/ STEVE/ TEXTFI LES/ MANUALS
0s9: pwd

/ D1/ STEVE/ TEXTFI LES/ MANUALS

0s9: chd ..

0s9: pwd

/ D1/ STEVE/ TEXTFI LES

0s9: chd ..

0s9: pwd

/ D1/ STEVE

0s9: pxd
/ DO/ C\VDS

Name
RENAME — Change file name

Synopsis

78

r enane pat h new nane

Description

Gives the mass storage file specified in the pathlist a new name. The user must have write permission
for the file to change its name. It is not possible to change the names of devices, . , or . .

Examples

rename blue purple

rename /D3/user9/test temp

0s9: dir

Directory of . 16:22:53
nyfile ani mal s

0OS9: renane animals cars
0S9: dir

Directory of . 16:23:22
nyfile cars

Name
RUNB — BASICQ9 run time package
Basic09 language system

Synopsis
runbi-code nodul e
Description

BASICO09 run time package.

Once one or more BASICO09 procedures are debugged to the programmer's satisfaction, they can be
“packed” or converted permanently to the bytecode form.

Packed BASICO9 procedures are in fact OS-9 modules, and the OS-9 shell recognizes them as |-code
and passes them off to the virtual machine emulator RunB for execution. RunB avoids a great deal of
the overhead of the typical interpreted BASICs of the day — not to mention that one can do integer
calculations where appropriate rather than doing everything in floating point — so that BASICO09
programs run very quickly in comparison with interpreted BASICs.

Name
SAVE — Save memory module(s) on afile

Synopsis
save pat h nodnane {nodnane}
Description
Creates a new file and writes a copy of the memory module(s) specified on to the file. The module

name(s) must exist in the module directory when saved. The new file is given access permissions for
all modes except public write.

79

Note: save's default directory is the current data directory. Executable modules should generaly be
saved in the default execution directory.

Examples

save wordcount wecount

save /dl/mathpack add sub mul div

Name
SETIME — Activate and set system clock

Synopsis
seti me [y,m,d,h,m,g|

Description
This command sets the system date and time, then activates the real time clock. The date and time
can be entered as parameters, or if no parameters are given, setime will issue a prompt. Numbers are

one or two decimal digits using space, colon, semicolon or slash delimiters. OS-9 system time uses
the 24 hour clock, i.e., 1520 is 3:20 PM.

I mportant
This command must be executed before OS-9 can perform multitasking operations. If the

system does not have areal time clock this command should still be used to set the date for
the file system.

Systems With Battery Backed up Clocks

Setime should still be run to start time-dlicing, but only the year need be given, the date and
time will be read from the clock.

Examples

0S9: setine 82,12,22,1545 (Set to: Dec. 12, 1981, 3:45 PM
0S9: setine 821222 154500 (Sane as above)

0S9: setinme 82 (For systemwi th battery-backup cl ock)

Name
SETPR — Set Process Priority

Synopsis
set pr procl Dnunber
Description
This command changes the CPU priority of a process. It may only be used with a process having

the user's ID. The process number is a decimal number in the range of 1 (lowest) to 255. The procs
command can be used to obtain process ID numbers and present priority.

NOTE: This command does not appear in the CVDS directory asit is built-in to the shell.

80

For more information see: Section 5.1, “Processor Time Allocation and Timeslicing”, procs

Examples
setpr 8250 (change process #8 priority to 250)

0OS9: procs

User # Id pty state Mem Primary nodul e

0 3 0 waiting 2 Shell <TERM
0 2 0 waiting 2 Shell <TERM
0 1 0 waiting 1 Sysgo <TERM

0S9: setpr 3 128
0OS9: procs

User # Id pty state Mem Primary nodul e

0 3 128 active 2 Shell <TERM
0 2 0 waiting 2 Shell <TERM
0 1 0 waiting 1 Sysgo <TERM

Name
SHELL — OS-9 Command Interpreter

Synopsis
shel | argli st

Description
The shell is OS-9's command interpreter program. It reads data from its standard input path (the
keyboard or afile), and interprets the data as a sequence of commands. - The basic function of the
shell isto initiate and control execution of other OS-9 programs.
The shell reads and interprets one text line at atime from the standard input path. After interpretation
of each line it reads another until an end-of-file condition occurs, at which time it terminatesitself. A
special caseiswhen the shell is called from another program, in which caseit will take the parameter
area (rest of the command line) as its first line of input. If this command line consists of “built in”
commands only, more lines will be read and processed; otherwise control will return to the caling

program after the single command line is processed.

Therest of this description isatechnical specification of the shell syntax. Use of the shell is described
fully in Chapters 2 and 4 of this manual.

Shell Input Line Formal Syntax
pgm l'ine := pgm {pgn}
pgm:= [parans] [nanme [nodif] [pgm parans] [nodif]] [sep]
Pr ogram Speci ficati ons

nanme : = nodul e nanme

81

pat hl i st
(pgmlist)

Par anet ers

paranms: = param { delim param }
delim:= space or conma characters
param : = ex nanme [nodif] chain to program specified
:= chd pathlist change working directory
= kill proclD send abort signal to process
= setpr proclD pty change process priority
= chx pathlist change execution directory
= w wait for any process to die
=p turn “0S9:” pronpting on
=-p turn pronpting off
=t echo input lines to std out put
= -t don't echo input lines
= -X dont abort on error
= X abort on error
= * text comment |ine: not processed
sep = sequenti al execution separator
=& concurrent execution separator
=1 pi pel i ne separ at or
= cr end-of-line (sequential execution separator)
Modi fiers
nmodif := mod { delimnod }
nod = pat hlist redirect standard input

> pathlist redirect standard out put

>> pathlist redirect standard error output

integer set process menory size in pages

integer K set program nenory size in 1K increnents

| 1 T I A

Name
SLEEP — Suspend process for period of time

Synopsis
sl eeptickcount

Description

This command puts the user's process to “sleep” for a number of clock ticks. It is generaly used to
generatetimedelaysor to “break up” CPU-intensive jobs. The duration of atick is 16.66 milliseconds.

A tick count of 1 causesthe processto “give up” itscurrent time dlide. A tick count of zero causesthe
process to sleep indefinitely (usually awakened by a signal)

Examples

0S9: sleep 25

Name

SMAP — Display System Memory
0OS9Leve Two

82

Synopsis

smap

Description

Displays system memory under OS-9 Level Two.

Examples
Name
TEE — Copy standard input to multiple output paths
Synopsis
t ee {pat h}
Description

Name

This command is a filter (see Section 4.3.3, “Pipes and Filters’) that copies all text lines from its
standard input path to the standard output path and any number of additional output paths whose
pathlists are given as parameters.

The example below uses a pipeline and tee to simultaneously send the output listing of the dir
command to the terminal, printer, and adisk file:

dir e ! tee /printer /dO/dir.listing

The following example sends the output of an assembler listing to adisk file and the printer:

asmpgmsrc | ! tee pgmlist >/printer

The example below “broadcasts’ a message to four terminals:

echo WARNI NG System down in 10 mnutes ! tee /tl /t2 /t3 /t4

TMODE — Change terminal operating mode

Synopsis

t node [.pat hnum] [ar gl i st]

Description

This command is used to display or change the operating parameters of the user's terminal.

If no arguments are given, the present values for each parameter are displayed, otherwise, the
parameter(s) given in the argument list are processed. Any number of parameters can be. given, and
are separated by spaces or commas. A period and a number can be used to optionally specify the path
number to be affected. If none is given, the standard input path is affected.

NOTE: If this command is used in a shell procedure file, the option “.pat hnun’ must be used to
specify one of the standard output paths (0, 1 or 2) to change the terminal's operating characteristics.
The change will remain in effect until the path is closed. To effect a permanent change to a device
characteristic, the device descriptor must be changed.

83

This command can work only if a path to the file/device has aready been opened. You may alter
the device descriptor to set adevice'sinitial operating parameter (see the OS-9 System Programmer's
Manual).

upc Upper case only. Lower case characters are automatically converted to
upper case.

-upc Upper case and lower case characters permitted (default).

bsb Erase on backspace: backspace characters echoed as a backspace-space-
backspace sequence (default).

-bsb no erase on backspace: echoes single backspace only

bd Backspace over line: lines are “deleted” by sending backspace-space-
backspace sequences to erase the same line (for video terminals)
(default).

-bsl No backspace over line: lines are “deleted” by printing a new line

sequence (for hard-copy terminals). echo Input characters “echoed”
back to terminal (default)

-echo No echo

If Auto line feed on: line feeds automatically echoed to terminal on input
and output carriage returns (default).

-If Auto line feed off.

pause Screen pause on: output suspended upon full screen. See “pag”
parameter for definition of screen size. Output can be resumed by typing
any key.

-pause Screen pause mode off.

null=n Set null count: number of null ($00) characterstransmitted after carriage
returns for return delay. The number is decimal, default = 0.

pag=n Set video display page length to n (decimal) lines. Used for “pause’
mode, see above.

bsp=h Set input backspace character. Numeric value of character in
hexadecimal. Default = 08.

bse=h Set output backspace character. Numeric value of character in
hexadecimal. Default = 08.

del=h Set input delete line character. Numeric value of character in
hexadecimal. Default = 18.

bell=h Set bell (alert) output character. Numeric value of character in
hexadecimal. Default = 07

eor=h Set end-of-record (carriage return) input character. Numeric value of
character in hexadecimal. Default = 0D

eof=h Set end-of-file input character. Numeric value of character in
hexadecimal. Default 1B.

type=h ACIA initidlization value: sets parity, word size, etc. Value in
hexadecimal. Default 15

reprint=h Reprint line character. Numeric value of character in hexadecimal.

dup=h Duplicate last input line character. Numeric value of character in
hexadecimal.

psc=h Pause character. Numeric value of character in hexadecimal.

abort=h Abort character (normally [Control[+C]). Numeric value of character in
hexadecimal.

quit=h Quit character (normally [Control[+[E]). Numeric value of character in

hexadecimal.

baud=d Set baud rate for software-controllable interface. Numeric code for baud
rate: 0=110 1=300 2=600 3=1200 4=2400 5=4800 6=9600 7=19200

Examples

tnode -upc | f null=4 bse=1F pause

t nrode pag=24 pause bsl -echo bsp=8 bsl =C

NOTE: If you usetmode in aprocedure file, it will be necessary to specify one of the standard output
paths (.1 or .2) since the shell's standard input path will have been redirected to the disk file (Tmode
can be used on an SCF-type devices only). Example:

tnode .1 pag=24 (set |ines/page on standard out put)

Name
TSMON — Timesharing monitor

Synopsis
t smon [pat hl i st]

Description

This command is used to supervise idle terminals and initiate the login sequence in timesharing
applications. If apathlist isgiven, standard I/O paths are opened for the device. When acarriage return
is typed, tsmon will automatically call the login command. If the login fails because the user could
not supply avalid user name or password, it will return to tsmon.

Note: The login command and its password file must be present for tsmon to work correctly (see the
login command description).

Logging Off the System

Most programs will terminate when an end of file character (escape) is entered as the first character
on acommand line. Thiswill log you off of the system and return control to tsmon.

For more information see: Section 4.9, “ Setting Up Timesharing System Procedure Files’, login

Examples

0S9:tsmon /t1&
&005

Name
UNLINK — Unlink memory module

Synopsis
unl i nk nodnane {nodnane}
Description
Tells OS-9 that the memory module(s) named are no longer needed by the user. The module(s) may

or may not be destroyed and their memory reassigned, depending on if in use by other processes or
user, whether resident in ROM or RAM, etc.

85

It is good practice to unload modules whenever possible to make most efficient use of available
MEeMOory resources.

Warning: never unlink amodule you did not load or link to.

For more information see: Section 5.4, “Basic Memory Management Functions’, Section 5.4.1,
“Loading Program Modules Into Memory”, Section 5.4.2, “Loading Multiple Programs”

Examples

unl i nk pgm pgnb pgnmB9

0s9: ndir

Modul e Directory at 11:26:22
DCB4 DO D1 D2 D3
Cs9P2 INT 0s9 | OVAN RBF
SCF ACl A TERM T1 T2
T3 P Pl A Sysgo d ock
Shel | Tsnon Edi t

0S9: unlink edit

0s9: ndir
Modul e Directory at 11:26:22

DCB4 DO D1 D2 D3
Cs9P2 INT 0s9 | OVAN RBF
SCF ACl A TERM T1 T2
T3 P Pl A Sysgo d ock
Shel | Tsnon

Name
VERIFY — Verify or update module header and CRC

Synopsis
verify[u]

Description

This command is used to verify that module header parity and CRC value of one or more modules
on afile (standard input) are correct. Module(s) are read from standard input, and messages will be
sent to the standard error path.

If the U (update) option is specified, the module(s) will be copied to the standard output path with
the modul€'s header parity and CRC values replaced with the computed values. A message will be
displayed to indicate whether or not the modul€'s values matched those computed by verify.

If the option is NOT specified, the module will not be copied to standard output. Verify will only
display amessageto indicate whether or not the modul€'s header parity and CRC matched those which
were computed.

Examples

0sS9: verify <EDIT >NEWEDI T

86

Modul €' s header parity is correct.
Cal cul at ed CRC mat ches nodul e' s.

0S9: verify <myprogram >nyprogran?

Modul €' s header parity is correct.
CRC does not match.

0S9: verify <myprogran®

Modul €' s header parity is correct.
Cal cul at ed CRC mat ches nodul e’ s.

0S9: verify u <nmpdul e >tenp

Name
XMODE — Examine or Change Device Initiaization Mode

Synopsis
xnode devnane [ar gl i st]

Description

This command is used to display or change the initialization parameters of any SCF-type device such
as the video display, printer, RS232 port, etc. A common use is to change baud rates, control key
definitions, etc.

Xmode is very similar to the tmode command. Tmode only operates on open paths so its effect
is temporary. Xmode actually updates the device descriptor so the change persists as long as the
computer is running, even if paths to the device are repetitively opened and closed. If xmodeis used
to change parameter(s) and the cobbler program is used to make a new system disk, the changed
parameter will be permanently reflected on the new system disk.

Xmaode requires a device name to be given. If no arguments are given, the present values for each
parameter are displayed, otherwise, the parameter(s) given in the argument list are processed. Any
number of parameters can be given, and are separated by spaces or commeas.

XMODE Parameter Names

upc Upper case only. Lower case characters are automatically converted to
upper case.

-upc Upper case and lower case characters permitted (default).

bsb Erase on backspace: backspace characters echoed as a backspace-space-
backspace sequence (default).

-bsb no erase on backspace: echoes single backspace only

bd Backspace over line: lines are “deleted” by sending backspace-space-
backspace sequences to erase the same line (for video terminals)
(default).

-bdl No backspace over line: lines are “deleted” by printing a new line

sequence (for hard-copy terminals). echo Input characters “echoed”
back to terminal (default)

-echo No echo

If Auto line feed on: line feeds automatically echoed to terminal on input
and output carriage returns (default).

87

pause
-pause
null=n
pag=n
bsp=h
bse=h
del=h
bell=h
eor=h
eof=h

type=h

11
=0

reprint
dup=h

psc=h
abort=h

quit=h

baud=d

Examples

Auto line feed off.

Screen pause on: output suspended upon full screen. See “pag”
parameter for definition of screen size. Output can be resumed by typing
any key.

Screen pause mode off.

Set null count: number of null ($00) characterstransmitted after carriage
returns for return delay. The number is decimal, default = 0.

Set video display page length to n (decimal) lines. Used for “pause”
mode, see above.

Set input backspace character. Numeric value of character in
hexadecimal. Default = 08.

Set output backspace character. Numeric value of character in
hexadecimal. Default = 08.

Set input delete line character. Numeric value of character in
hexadecimal. Default = 18.

Set bell (alert) output character. Numeric value of character in
hexadecimal. Default = 07

Set end-of-record (carriage return) input character. Numeric value of
character in hexadecimal. Default = 0D

Set end-of-file input character. Numeric value of character in
hexadecimal. Default 1B.

ACIA initialization value: sets parity, word size, etc. Value in
hexadecimal. Default 15

Reprint line character. Numeric value of character in hexadecimal.

Duplicate last input line character. Numeric value of character in
hexadecimal.

Pause character. Numeric value of character in hexadecimal.

Abort character (normally [Control]+d]). Numeric value of character in
hexadecimal.

Quit character (normally [Control[+[E]). Numeric value of character in
hexadecimal.

Set baud rate for software-controllable Acia 6551 interface. Numeric
codefor baud rate: 0=110 1=300 2=600 3=1200 4=2400 5=4800 6=9600
7=19200

xnmode / TERM -upc | f null =4 bse=1F pause

xnmode /Tl pag=24 pause bsl -echo bsp=8 bsl =C

xmode /P baud=3 -if

88

Appendix A. OS-9 Error Codes

The error codes are shown in both hexadecimal (first column) and decimal (second column). Error
codes other than those listed are generated by programming languages or user programs.

HEX DEC
$C8 200
$C9 201
$CA 202
$CB 203
$CC 204
$CD 205
$CE 206
$CF 207
$D0O 208
$D1 209
$D2 210
$D3 211
$D4 212
$D5 213
$D6 214
$D7 215
$D8 216
$D9 217
$DA 218
$DB 219
$DC 220
$DD 221
$DE 222
$DF 223
$EO 224
$E2 226
$E3 227

PATH TABLE FULL - The file cannot be opened because the
system path tableis currently full.

ILLEGAL PATH NUMBER - Number too large or for non-existant
path.

INTERRUPT POLLING TABLE FULL

ILLEGAL MODE - attempt to perform 1/O function of which the
deviceor fileisincapable.

DEVICE TABLE FULL - Can't add another device

ILLEGAL MODULE HEADER - module not loaded because its
sync code, header parity, or CRC isincorrect.

MODULE DIRECTORY FULL - Can't add another module

MEMORY FULL - Level One: not enough contiquous RAM free.
Level Two: process address space full

ILLEGAL SERVICE REQUEST - System call had an illegal code
number.

MODULE BUSY - non-sharable module is in use by another
process.

BOUNDARY ERROR - Memory allocation or deallocation request
not on a page boundary.

END OF FILE - End of file encountered on read.

RETURNING NON-ALLOCATED MEMORY - attempted to
deallocate memory not previously assigned.

NON-EXISTING SEGMENT - device has damaged file structure.
NO PERMISSION - file attributes do not permit access requested.
BAD PATH NAME - syntax error in pathlist (illegal character, etc.).
PATH NAME NOT FOUND - can't find pathlist specified.

SEGMENT LIST FULL - file is too fragmented to be expanded
further.

FILE ALREADY EXISTS - file name aready appears in current
directory.

ILLEGAL BLOCK ADDRESS - device's file structure has been
damaged.

ILLEGAL BLOCK SIZE - device'sfile structure has been damaged.

MODULE NOT FOUND - request for link to module not found in
directory.

SECTOR OUT OF RANGE - device file structure damaged or
incorrectly formatted.

SUICIDE ATTEMPT - request to return memory where your stack
islocated.

ILLEGAL PROCESS NUMBER - no such process exists.
NO CHILDREN - can't wait because process has no children.
ILLEGAL SWI CODE - must be 1 to 3.

89

Device Driver Errors

HEX DEC
$E4 228
$ES 229
$E6 230
$E7 231
$E8 232
$E9 233
$EA 234
$EB 235
$EC 236
$ED 237
$EE 238
$EF 239

PROCESS ABORTED - process aborted by signal code 2.
PROCESS TABLE FULL - can't fork now.

ILLEGAL PARAMETER AREA - high and low bounds passed in
fork call areincorrect.

KNOWN MODULE - for internal use only.
INCORRECT MODULE CRC - module has bad CRC value.

SIGNAL ERROR - receiving process has previous unprocessed
signal pending.

NON-EXISTENT MODULE - unable to locate module.

BAD NAME - illegal name syntax

BAD HEADER - module header parity incorrect

RAM FULL - no free system RAM available at thistime
UNKNOWN PROCESS ID - incorrect process |D number
NO TASK NUMBER AVAILABLE - al task numbersin use

A.1l. Device Driver Errors

Thefollowing error codes are generated by 1/0 devicedrivers, and are somewhat hardware dependent.

Consult manufacturer's hardware manual for more details.

$FO
$F1
$F2
$F3
$F4

$F5
$F6
$F7
$F8
$F9

$FA
$FB
$FC

$FD

240
241
242
243
244

245
246
247
248
249

250
251
252

253

UNIT ERROR - device unit does not exist.
SECTOR ERROR - sector number is out of range.
WRITE PROTECT - device iswrite protected.
CRC ERROR - CRC error on read or write verify.

READ ERROR - Datatransfer error during disk read operation, or
SCF (terminal) input buffer overrun.

WRITE ERROR - hardware error during disk write operation.
NOT READY - device has “not ready” status.

SEEK ERROR - physical seek to non-existant sector.
MEDIA FULL - insufficient free space on media.

WRONG TY PE - attempt to read incompatible media (i.e. attempt
to read double-side disk on single-side drive)

DEVICE BUSY - non-sharable deviceisin use
DISK ID CHANGE - Mediawas changed with files open

RECORD IS LOCKED-OUT - Another process is accessing the
reguested record.

NON-SHARABLE FILE BUSY - Another process is accessing the
requested file.

90

Appendix B. VDG Display System
Functions

B.1. The Video Display Generator

0S-9 dlows the VDG display to be used in aphanumeric, semigraphic, and graphics modes. There
are many built-in functions to control the display, which are activated by used of various ASCII
control characters. Thus, these functions are available for use by software written in any language
using standard output statements (such as“PRINT” in BASIC). The Basic09 |language has a Graphics
Interface Module that can automatically generate these codes using Basic09 RUN statements.

The display system has two display modes: Alphanumeric (“Alpha’) mode and Graphics mode. The
Alphanumeric mode also includes “semigraphic” box-graphics. The computer's display system uses
a separate - memory area for each display mode so operations on the Alpha display do not affect the
Graphics display, and visa-versa. Either display can be selected under software control.

8-bit characters sent to the display system are interpreted according to their numerical value, as shown
in the chart below.

Character Range (Hex) M ode/Used For

00 - OE AlphaMode - cursor and screen control
OF-1B Graphics Mode - drawing and screen control
1C-20 Not used

20 - 5F AlphaMode - upper case characters

60 - 7F AlphaMode - lower case characters

80 - FF AlphaMode - Semigraphic patterns

Thegraphicsand a phanumeric functionsare handled by the OS-9 device driver module called“ CCIO”
or “KBVDIO".

B.2. Alpha Mode Display

Thisisthe“standard” operational mode. It isused to display a phanumeric charactersand semigraphic
box graphics, and simulates the operation of atypical computer terminal with functions for scrolling,
cursor positioning, clear screen, line delete, etc.

Each 8-hit character is assumed to be an ASCII character and is displayed if its high order bit (sign
bit) is cleared. Lower case |etters are displayed in reverse video. If the high order bit of the character

issetitisassumed to bea" Semigraphic 6” graphics box. See the computer manual for an explanation
of semigraphics functions.

Table B.1. Alpha M ode Command Codes

Control Name/Function

Code

01 HOME - return cursor to upper left hand corner of screen

02 CURSOR XY - move cursor to character X of lineY. The binary value
minus 32 of the two characters following the control character are used
as the X and Y coordinates. For example, to position the cursor at
character 5 of line 10, you must give X=37 and Y 42

03 ERASE LINE - erases al characters on the cursor's line.

91

Graphics Mode Display

Control Name/Function

Code

06 CURSOR RIGHT - move cursor right one character position

08 CURSOR LEFT - move cursor left one character position

09 CURSOR UP - move cursor up oneline

10 CURSOR DOWN (linefeed) move cursor down oneline

12 CLEAR SCREEN - erase entire screen and home cursor

13 RETURN - return cursor to leftmost character of line

14 DISPLAY ALPHA - switch screen from graphic mode to al phanumeric

mode

B.3. Graphics Mode Display

This mode is used to display high-resolution 2- or 4-color graphics, and it includes commands to: set
color; plot and erase individual points; draw and erase lines; position the graphics cursor; and draw
circles.

The DISPLAY GRAPHICS command must be executed before any other graphics mode command is
used. It causes the graphics screen to be displayed and setsa current display format and color. Thefirst
timethe DISPLAY GRAPHICS command is given, a 6144 byte display memory isallocated by OS-9,
so there must be at least this much continuous free memory available (the OS-9 mfree command can
be used to check free memory). Thismemory isretained until the END GRAPHICS commandisgiven,
even if the program that initiated Graphics mode finishes, so it important that the END GRAPHICS
command be used to give up the display memory when Graphics mode is no longer needed.

Graphics mode supportstwo basic formats: Two-Color which has 256 horizontal by 192 vertical points
(G6R made); and Four Color which has 128 horizontal by 192 vertical points (G6C mode). Two color
setsareavailablein either mode. Regardless of the resolution of the format selected, all Graphics mode
commands use a 256 by 192 point coordinate system. The X and Y coordinates are always positive
numbers which assume that point 0,0 is the lower lefthand corner of the screen.

Aninvisible Graphics Cursor is used by many command to reduce the amount of output required to
generate graphics. This cursor can be explicitly set to any point using the SET GRAPHICS CURSOR
command. Also, all other commands that include X,Y coordinates (such as SET POINT) move the
graphics cursor to the specified position.

Table B.2. Graphics Mode Selection Codes

Code Format
00 256 x 192 two-color graphics
01 128 x 192 four-color graphics

Table B.3. Color Set and Current Foreground Color Selection Codes

Two Color Format Four Color Format
Char Background Foreground Background Foreground

00 Black Black Green Green
Color 01 Black Green Green Yellow
Set 1 02 Green Blue

03 Green Red
Color 04 Black Black Buff Buff
Set 2 05 Black Buff Buff Cyan

92

Graphics Mode Display

Color
Set 3*

Color
Set 4*

Two Color Format Four Color Format

Char Background Foreground Background Foreground

06 Buff Magenta

07 Buff Orange

08 Black Black

09 Black Dark Green
10 Black Med. Green
11 Black Light Green
12 Black Black

13 Black Green

14 Black Red

15 Black Buff

* Color sets 3 and 4 not available on PAL video system (European) models. These color sets work
only with NTSC (U.S., Canada, Japan) models.

Table B.4. Graphics Mode Control Commands

Control
Code

Name/Function

15

16

17

18

19

20

21

22

23

24

DISPLAY GRAPHICS - switches screen to graphics mode. This
command must be given before any other graphics commands are
used. The first time this command is given, a 6K byte display buffer
is assigned. If 6K of contiguous memory is not available an error is
returned. This command is followed by two characters which specify
the graphics mode and current color/color set, respectively.

PRESET SCREEN - presets entire screen to color code passed in next
character.

SET COLOR - selects foreground color (and color set) passed in next
character, but does not change graphics mode.

QUIT GRAPHICS - disables graphics mode and returns the 6K byte
graphics memory areato OS-9 for other use. If the screenisnot in alpha
mode, then behavior is undetermined.

ERASE GRAPHICS - erases all pointsto background color and homes
graphics cursor to the desired position.

HOME GRAPHICS CURSOR - moves graphics cursor to coordinates
0,0 (lower left hand corner).

SET GRAPHICS CURSOR - moves graphics cursor to given
coordinates X,Y. The binary value of the two characters that
immediately follow are used asthe X and Y values, respectively.

DRAW LINE - draws a line of the current foreground color from the
current graphics cursor position to the given X,Y coordinates. The
binary value of the two characters that immediately follow are used as
the X and Y values, respectively. The graphics cursor is moved to the
end point of the line.

ERASE LINE - same as DRAW LINE except thelineis“drawn” in the
current background color, thus erasing the line.

SET POINT - setsthe pixel-at point X,Y to the current foreground color.
The binary value of the two charactersthat immediately follow are used
asthex and Y values, respectively. The graphics cursor is moved to the
point set.

93

Get Status Commands

Control Name/Function

Code

25 ERASE POINT - same as DRAW POINT except the point is “drawn”
in the current background color, thus erasing the point.

26 DRAW CIRCLE - draws a circle of the current foreground color with

its center at the current graphics cursor position using aradius R which
is obtained using the binary value of the next character. The graphics
cursor position is not affected by this command.

B.4. Get Status Commands

The computer's 1/O driver includes OS-9 Get Status commands that return the display status and
joystick values, respectively. These are accessable via the Basic09 Graphics Interface Module, or by
the assembly language system calls listed below:

GET DISPLAY STATUS:

Calling Format | da #1 (pat h nunber)
| db #SS. DSt at (CGetstat code $12)
0s9 | $GSTT call 0s-9

Passed nothing

Returns X = address of graphics display memory

Y = graphics cursor addressx=MSB y =L SB
A = color code of pixel at cursor address

GET JOYSTICK VALUES:

Calling Format | da #1 (pat h nunber)
| db #SS. Joy (Getstat code $13)
0s9 | $GSTT call Cs-9
Passed X = 0for right joystick; 1 for left joystick
Returns X = selected joystick x value (0-63)

Y = sdlected joystick y value (0-63)
A = $FF if fire button on; $00 if off

RETURN ALFA DISPLAY STATUS:

Calling Format | da #1 (pat h nunber)
| db #SS. Al faS (Getstat code $10)
0s9 | $GSTT call 0s-9

Passed nothing

Returns X = Base address of apha mode screen buffer.

Y = Cursor position in bytes from base address.
A = FFif shift lock is engaged, 0 otherwise

Table B.5. Display Control Codes Condensed Summary

1st Byte 2nd Byte 3rd Byte Function

00 Null

01 Home Alpha Cursor
02 Column+32 Row+32 Position Alpha Cursor
03 Erase Line

94

Get Status Commands

1st Byte 2nd Byte 3rd Byte Function
06 Cursor Right
08 Cursor Left
09 Cursor Up
10 Cursor Down
12 Clear Screen
13 Carriage Return
14 Select Alpha Mode
15 Mode Color Code Select Graphics Mode
16 Color Code Preset Screen
17 Color Code Select Color
18 Quit Graphics

Mode
19 Erase Screen
20 Home

Graphics

Cursor
21 X Coord Y Coord Move Graphics Cursor
22 X Coord Y Coord Draw Lineto X/Y
23 X Coord Y Coord EraseLineto X/Y
24 X Coord Y Coord Set Point at X/Y
25 X Coord Y Coord Clear Point at X/Y
26 Radius Draw Circle

95

96

Appendix C. Key Definitions With
Hexadecimal Values

| 7C
00
- TE
00
00
00
5E
[5B
] 5D
00
00
7B
5F
7D
5C

— - 1

FUNCTI ON KEYS

NOCRM SHFT CTRL

NORM SHFT
0 30 0 30
131 ! 21
2 32 22
3 33 # 23
4 34 $ 24
535 %25
6 36 & 26
7 37 ' 27
8 38 (28
9 39) 29
. 3A * 2A
. 3B + 2B
, 2C < 3C
- 2D = 3D
. 2E > 3E
/| 2F ? 3F
BREAK 05
ENTER 0D
SPACE 20
<- 08
-> 09
v OA
n oC

03
0D
20
18
19
1A
1C

1B
0D
20
10
11
12
13

I 6C

P 50
Q 51
R 52
S 53
T 54
U 55
V 56
W 57
X 58
Y 59
Z 5A

NS Xs<Cc~™0n=-00T

97

98

Appendix D. GO51...The 51 Column

by 24 Line Video Display
An dternative video screen device driver, which provides a 51 column by 24 line display with upper
and lower case character sets, can be incorporated into OS-9 with the command:
Gob1

This command replaces the normal text screen driver with one that uses high resolution graphics to
“draw” the characters. Asthere are fewer pixels (dots) per character in this mode more characters can
be displayed on the screen, albeit with some loss of character definition.

Note, however, that the use of a high resolution graphics page means that an extra 6K bytes will be
needed in thismode. This extramemory requirement isnot normally aproblem but in memory-critical
applications, such asthe C and Pascal compilers, the user can simply avoid the use of GO51.

Thismode of display hasaset of escape sequences (commands) to emulate commercial dataterminals.
In addition to the video screen driver, GO51 provides a new keyboard driver which features auto-
repeat. The keyboard code allocation is the same as described in section 2.4.3 and Appendix D.

D.1. The GO51 Display Functions

Likethe normal 32 by 16 video display functionsdescribed in Appendix C the 51 by 24 mode provides
many built in facilities to control the display. These functions are activated by the use of the various
escape sequences and control characters described below:

Escape Sequence (Hex) Name/Function

1B41XY CURSOR XY - move cursor to column X(0-50) and Y (0-23)
where X and Y are single byte values.

1B 42 CLEAR EOL - clear from cursor to the end of line. Cursor
position remains unchanged.

1B 43 CURSOR RIGHT - move cursor right by one character
position.

1B 44 CURSOR UP - move cursor up by oneline.

1B 45 CURSOR DOWN - move cursor down one line.

1B 46 REVERSE ON - turn reverse field on.

1B 47 REVERSE OFF - turn reverse field off.

1B 48 UNDERLINE ON - turn underline on.

1B 49 UNDERLINE OFF - turn underline off.

1B 4A CLEAR EOS - clear from cursor to end of screen. Cursor

position remains unchanged.

Control Character Name/Function

(Hex)

07 BELL - generates a short audible tone.

08 BACKSPACE (CURSOR LEFT) - moves cursor left one
character position.

0A LINE FEED - move cursor down by one line.

0B CURSOR HOME - move cursor to home position 0,0 (top | eft).

0oC CLEAR SCREEN - clears the screen and home cursor.

99

100

Appendix E. Using the Serial Interface

For those who wish to use the serial port, the input or output path of a program may be redirected to
the serial port of your computer.

Thisis done by including the following module in the OS-9 kerndl:
ACIABL - Serial Device Driver
To load thismodule into the kernel enter the following command line:

LOAD / DO/ CVDS/ ACI A51

E.1. Serial Printer Implementation

For those with a serial printer, you can use the serial port in the redirection of a program'’s output path
by including the following modifier at the end of acommand line:

>/ P1
The baud rate of the serial port may be changed as follows:
XMODE / P1 BAUD=3

This will change the baud rate to 1200 characters per second. For a detailed description of the baud
rate see the XMODE command description.

E.2. Serial Terminal Implementation

For those who wish to connect two computers, running OS-9, together using the serial port, redirection
of the input or output paths is possible using the following modifier at the end of a command line:

>/T1 - for an output path

</T1l - for an input path

To pass afile of data between the two computers, one must be configured for input from the serial
port and the other configured for output:

Computer 1, BUI LD TEXT </ T1 - input to port
Computer 2, BUI LD <TEXT / T1 - output to port

Using the above example, the text file on computer 2 will be transferred to a file called TEXT on
computer 1.

When the command line is entered on computer 1, the system will reply with a question mark and
wait for information from the serial port. The command line on computer 2 will send datato the now
waiting computer 1. A string of question marks will now be seen, thisis the number of lines sent and
recieved by the respective computers.

To create alog-off sequence after such atransfer, usethe DISPLAY command as follows:

Computer 1, BU LD <TEXT /T1 ; DI SPLAY OA 0D >/T1

101

102

Command
Summary

A

ASM, 43
ATTR, 44

B

BACKUP, 44
BASICO09, 45
BINEX, 46
BUILD, 47

C

CC, 47
CHDI/CHX, 48
CMP, 49
COBBLER, 49
COPY, 50

D

DATE, 51
DCHECK, 51
DEBUG, 54
DEL, 54
DELDIR, 55
DEVS, 56
DIR, 56
DISASM, 57
DISPLAY, 58
DMODE, 58
DSAVE, 59
DUMP, 60

E

ECHO, 60
EDIT, 61

EX, 61
EXBIN, 62
EXMODE, 62

F

FORMAT, 64
FREE, 64

G
GOs1, 65

H
HELP, 66

I
IDENT, 67

K
KILL, 69

L

LINK, 69
LIST, 70
LOAD, 71
LOGIN, 71

M

MAKDIR, 73
MDIR, 73
MERGE, 74
MFREE, 75

O

OSOGEN, 75

P

PRINTERR, 77
PROCS, 77
PWD/PXD, 78

R

RENAME, 78
RUNB, 79

S

SAVE, 79
SETIME, 80
SETPR, 80
SHELL, 81
SLEEP, 82
SMAP, 82

T

TEE, 83
TMODE, 83
TSMON, 85

U
UNLINK, 85

V
VERIFY, 86

X
XMODE, 87

103

104

	OS-9 Operating System User's Guide
	Table of Contents
	Welcome to OS-9!
	Chapter 1. Getting Started...
	1.1. What You Need to Run OS-9
	1.1.1. Starting the System
	1.1.2. In Case You Have Problems Starting OS-9
	1.1.3. A Quick Introduction to the Use of the Keyboard and Disks
	1.1.4. Initial Explorations

	1.2. Making a Backup of the System Disk
	1.2.1. Formatting Blank Disks
	1.2.2. Running the Backup Program

	Chapter 2. Basic Interactive Functions
	2.1. Running Commands and Basic Shell Operation
	2.1.1. Sending Output to the Printer

	2.2. Shell Command Line Parameters
	2.3. Some Common Command Formats
	2.4. Using the Keyboard and Video Display
	2.4.1. Video Display Functions
	2.4.2. Keyboard Shift and Control Functions
	2.4.3. Control Key Functions

	Chapter 3. The OS-9 File System
	3.1. Introduction to the Unified Input/Output System
	3.2. Pathlists: How Paths Are Named
	3.3. I/O Device Names
	3.4. Multifile Devices And Directory Files
	3.5. Creating and Using Directories
	3.6. Deleting Directory Files
	3.7. Additional Information About Directories
	3.8. Using and Changing Working Directories
	3.8.1. Automatic Selection of Working Directories
	3.8.2. Changing Current Working Directories
	3.8.3. Anonymous Directory Names

	3.9. The File Security System
	3.9.1. Examining and Changing File Attributes

	3.10. Reading and Writing From Files
	3.10.1. File Usage in OS-9
	3.10.2. Text Files
	3.10.3. Random Access Data Files
	3.10.4. Executable Program Module Files
	3.10.5. Directory Files
	3.10.6. Miscellaneous File Usage
	3.10.7. Record Lockout (Level Two Only)

	3.11. Physical File Organization
	3.12. Physical Sector I/O

	Chapter 4. Advanced Features of the Shell
	4.1. A More Detailed Description Command Line Processing
	4.2. Execution Modifiers
	4.2.1. Alternate Memory Size Modifier
	4.2.2. I/O Redirection Modifiers

	4.3. Command Separators
	4.3.1. Sequential Execution
	4.3.2. Concurrent Execution
	4.3.3. Pipes and Filters

	4.4. Command Grouping
	4.5. Built-in Shell Commands and Options
	4.6. Shell Procedure Files
	4.7. Error Reporting
	4.8. Running Compiled Intermediate Code Programs
	4.9. Setting Up Timesharing System Procedure Files

	Chapter 5. Multiprogramming and Memory Management
	5.1. Processor Time Allocation and Timeslicing
	5.2. Process States
	5.3. Creation of New Processes
	5.4. Basic Memory Management Functions
	5.4.1. Loading Program Modules Into Memory
	5.4.2. Loading Multiple Programs
	5.4.3. Memory Fragmentation

	Chapter 6. Use of the System Disk
	6.1. The OS9Boot File
	6.2. The SYS Directory
	6.3. The Startup File
	6.4. The CMDS Directory
	6.5. The DEFS Directory
	6.6. Changing System Disks
	6.7. Making New System Disks

	Chapter 7. System Command Descriptions
	7.1. Formal Syntax Notation
	7.2. Commands
	ASM
	ATTR
	BACKUP
	BASIC09
	BINEX
	BUILD
	CC
	CHD/CHX
	CMP
	COBBLER
	COPY
	DATE
	DCHECK
	DEBUG
	DEL
	DELDIR
	DEVS
	DIR
	DISASM
	DISPLAY
	DMODE
	DSAVE
	DUMP
	ECHO
	EDIT
	EX
	EXBIN
	EXMODE
	FORMAT
	FREE
	GO51
	HELP
	IDENT
	KILL
	LINK
	LIST
	LOAD
	LOGIN
	MAKDIR
	MDIR
	MERGE
	MFREE
	OS9GEN
	PRINTERR
	PROCS
	PWD/PXD
	RENAME
	RUNB
	SAVE
	SETIME
	SETPR
	SHELL
	SLEEP
	SMAP
	TEE
	TMODE
	TSMON
	UNLINK
	VERIFY
	XMODE

	Appendix A. OS-9 Error Codes
	A.1. Device Driver Errors

	Appendix B. VDG Display System Functions
	B.1. The Video Display Generator
	B.2. Alpha Mode Display
	B.3. Graphics Mode Display
	B.4. Get Status Commands

	Appendix C. Key Definitions With Hexadecimal Values
	Appendix D. GO51...The 51 Column by 24 Line Video Display
	D.1. The GO51 Display Functions

	Appendix E. Using the Serial Interface
	E.1. Serial Printer Implementation
	E.2. Serial Terminal Implementation

	Command Summary

