
OS-9 Operating System User's Guide

For Use with OS-9 Level
One and OS-9 Level Two

OS-9 Operating System User's Guide: For Use with OS-9 Level One
and OS-9 Level Two
Copyright © 1980, 1983 Microware Systems Corporation

All Rights Reserved.

iii

Introduction .. v
1. Getting Started... ... 1

1.1. What You Need to Run OS-9 ... 1
1.1.1. Starting the System ... 1
1.1.2. In Case You Have Problems Starting OS-9 ... 1
1.1.3. A Quick Introduction to the Use of the Keyboard and Disks 2
1.1.4. Initial Explorations ... 2

1.2. Making a Backup of the System Disk ... 3
1.2.1. Formatting Blank Disks ... 3
1.2.2. Running the Backup Program ... 4

2. Basic Interactive Functions .. 5
2.1. Running Commands and Basic Shell Operation .. 5

2.1.1. Sending Output to the Printer ... 5
2.2. Shell Command Line Parameters ... 6
2.3. Some Common Command Formats .. 7
2.4. Using the Keyboard and Video Display .. 7

2.4.1. Video Display Functions .. 8
2.4.2. Keyboard Shift and Control Functions .. 8
2.4.3. Control Key Functions ... 8

3. The OS-9 File System .. 11
3.1. Introduction to the Unified Input/Output System ... 11
3.2. Pathlists: How Paths Are Named .. 11
3.3. I/O Device Names ... 12
3.4. Multifile Devices And Directory Files ... 12
3.5. Creating and Using Directories .. 13
3.6. Deleting Directory Files ... 15
3.7. Additional Information About Directories .. 15
3.8. Using and Changing Working Directories .. 16

3.8.1. Automatic Selection of Working Directories .. 16
3.8.2. Changing Current Working Directories ... 17
3.8.3. Anonymous Directory Names .. 17

3.9. The File Security System .. 18
3.9.1. Examining and Changing File Attributes ... 18

3.10. Reading and Writing From Files ... 19
3.10.1. File Usage in OS-9 .. 19
3.10.2. Text Files .. 20
3.10.3. Random Access Data Files .. 20
3.10.4. Executable Program Module Files .. 20
3.10.5. Directory Files .. 21
3.10.6. Miscellaneous File Usage ... 21
3.10.7. Record Lockout (Level Two Only) ... 21

3.11. Physical File Organization ... 21
3.12. Physical Sector I/O .. 22

4. Advanced Features of the Shell .. 25
4.1. A More Detailed Description Command Line Processing 25
4.2. Execution Modifiers ... 26

4.2.1. Alternate Memory Size Modifier ... 26
4.2.2. I/O Redirection Modifiers ... 26

4.3. Command Separators ... 27
4.3.1. Sequential Execution ... 27
4.3.2. Concurrent Execution .. 27
4.3.3. Pipes and Filters ... 28

4.4. Command Grouping ... 28
4.5. Built-in Shell Commands and Options ... 29
4.6. Shell Procedure Files ... 30
4.7. Error Reporting ... 30
4.8. Running Compiled Intermediate Code Programs ... 31
4.9. Setting Up Timesharing System Procedure Files ... 31

OS-9 Operating System User's Guide

iv

5. Multiprogramming and Memory Management ... 33
5.1. Processor Time Allocation and Timeslicing .. 33
5.2. Process States ... 34
5.3. Creation of New Processes .. 34
5.4. Basic Memory Management Functions .. 35

5.4.1. Loading Program Modules Into Memory ... 35
5.4.2. Loading Multiple Programs .. 37
5.4.3. Memory Fragmentation .. 37

6. Use of the System Disk .. 39
6.1. The OS9Boot File ... 39
6.2. The SYS Directory .. 40
6.3. The Startup File .. 40
6.4. The CMDS Directory ... 40
6.5. The DEFS Directory .. 40
6.6. Changing System Disks .. 40
6.7. Making New System Disks ... 41

7. System Command Descriptions .. 43
7.1. Formal Syntax Notation .. 43
7.2. Commands ... 43

A. OS-9 Error Codes ... 89
A.1. Device Driver Errors ... 90

B. VDG Display System Functions ... 91
B.1. The Video Display Generator .. 91
B.2. Alpha Mode Display ... 91
B.3. Graphics Mode Display ... 92
B.4. Get Status Commands ... 94

C. Key Definitions With Hexadecimal Values .. 97
D. GO51...The 51 Column by 24 Line Video Display .. 99

D.1. The GO51 Display Functions .. 99
E. Using the Serial Interface .. 101

E.1. Serial Printer Implementation .. 101
E.2. Serial Terminal Implementation ... 101

Command Summary ... 103

v

Welcome to OS-9!
At the heart of your computer is an amazing device: the 6809 central processing unit (CPU). When
introduced in 1980, This microprocessor offered sophisticated features that were only found only on
much larger and costly computers. Even today, it is architecture is considered feature-rich. The OS-9
operating system was designed around the 6809 microprocessor to provide an extremely efficient and
powerful operating system.

The foundation of a computer's software system is its Operating System or “OS”. It is the master control
program that interfaces all other software to the system's hardware. Some of the things it must do are
performing input and output operations, coordinating memory use, and many other “housekeeping”
functions. All other software - programming languages, applications programs, etc. - live in your
computer's memory along with the OS and depend on it to communicate with you using the keyboard
and display and to store and retrieve data on disks, etc. Because virtually all other software relies on
the OS, your computer's performance depends on the capabilities and efficiency of its OS.

OS-9's overall structure was based on the famous UNIX1 operating system, which has been widely
acclaimed as the operating system of the future because of its versatility, logical structure, and friendly
user commands. The OS-9 family of advanced software is not only more powerful than most other
microcomputer scftware - it is also much easier to learn and use.

Some of the advanced OS-9 features you'll learn about in this book are:

1. Friendly UNIX-like user interface and environment

2. Multiuser/Multitasking Real-Time Operating System

3. Extensive support for structured, modular programming

4. Device-independent interrupt-driven input/output system

5. Multi-level directory file system

6. Fast Random-Access File System

7. Readily Expandable and Adaptable Design

If you don't know what some of these thing mean yet - don't worry. As you explore OS-9 you'll soon
learn how they enhance the capability of your computer and make it so much easier to use in almost
any application.

OS-9 has many commands and functions - definitely more than you can learn in an evening! The
best way to become an OS-9 expert is to study this manual carefully, section-by-section, taking time
to try out each command or function. Because many functions affect others, you'll find this manual
extensively cross-referenced so you can skip ahead to help you understand a new topic. Taking the
time to study this book will certainly increase your knowledge and enjoyment of OS-9.

But if you can't wait, at least read the rest of this chapter, scan the command descriptions in a later
chapter, and have fun experimenting!

1 UNIX is an operating system designed by Bell Telephone Laboratories, which is becoming widely recognized as a standard for mini and
micro operating systems because of its versatility and elegant structure.

vi

1

Chapter 1. Getting Started...
1.1. What You Need to Run OS-9

OS-9 has been tailored to run on the TRS-80 Color Computers and Dragon 64. OS-9 Level II can
only run on the Color Computer 3 due to the requirement of a memory management unit. To use it
you'll need the following:

• 64K memory for OS-9 Level One and 128K for Level II

• Disk Drive With Controller Cartridge

• An OS-9 System Disk

OS-9 is also ready to use the following optional equipment that you may have now or may obtain
in the future:

• Additional Floppy Disk Drives

• SCSI or IDE Hard Drives

• Printers and Modems

• Additional Serial Ports

• Joysticks and Mice

• Other OS-9 Compatible Languages and Software

1.1.1. Starting the System

To start up OS-9 follow these steps:

1. Turn the computer and disk drive(s) on. You should see the usual BASIC greeting message on
the screen.

2. Insert the OS-9 System Disk in drive zero and close the door.

3. Type “DOS” or “BOOT”.1 After a few seconds of disk activity you should see a screen with the
words “OS9 BOOT”.

4. OS-9 will then begin its “bootstrap” loading process, which involves ten to twenty seconds of disk
activity. When the system startup has finished, a message followed by the shell prompt will be
displayed.

1.1.2. In Case You Have Problems Starting OS-9

• If BASIC gives an error message after you type “DOS”, remove the disk, turn the computer off and
on, then try again. If this repeatedly fails your OS-9 diskette may be bad.

• Did you remember to turn the disk drive power switch on?

• Does your computer have the required RAM? This is a must!

• If your Color Computer doesn't seem to understand the DOS command, your controller has DOS
1.0. You will need to upgrade to DOS 1.1.

1 “DOS” on Color Computers, “BOOT” on Dragons.

A Quick Introduction to the
Use of the Keyboard and Disks

2

• If the “OS9 BOOT” message is displayed but nothing else happens, you may have a corrupted
system disk. Hopefully you did make a backup!

1.1.3. A Quick Introduction to the Use of the Keyboard and Disks

For now, the only special keys on the keyboard of interest are the SHIFT key which works like a
typewriter shift key; the ENTER key which you always use after typing a command or response to
OS-9; and the ← left arrow key which you can use to erase typing mistakes.

Your main disk drive is known to to OS-9 as “/D0” and is often called “drive zero”. If you have a
second disk drive (drive one), OS-9 recognizes it as “/D1”. Why would anybody put a “/” in a name?
Because all input and output devices have names like files, and names that start with “/” are always
device names.

1.1.4. Initial Explorations

When OS-9 first starts up, it will display a welcoming message, and then ask you to enter the date and
time. This allows OS-9 to keep track of the date and time of creation of new files and disks. Enter the
current date and time in the format requested like this:

 YY/MM/DD HH:MM:SS
 TIME ? 83 7 14 1420

In the example above, the date entered was July 14, 1983. OS-9 uses 24-hour time so the date entered
was 1420 hours or 2:20 PM. Next, OS-9 will print the shell prompt to let you know it is ready for
you to type in a command.

Now you're ready to try some commands. A good first command to try is dir (for “directory”). This
will display a list of the files on the System Disk. Just type:

dir

followed by a “return”. OS-9 should respond with a listing of file names which should look something
like this:

 OS9Boot startup CMDS SYS DEFS

The file OS9Boot contains the OS-9 program in 6809 machine language, which was loaded into
memory during the bootstrap operation.

The file startup is a “command file” which is automatically run when the system starts up, and has
the commands that printed the welcoming message and asked for the time. Later, You may want to
replace this startup file with your own customized version after you are more familiar with OS-9. Do
you want to see the contents of this file? If so, just type

list startup

As you can see, the list command displays the contents of files that contain text (alphabetic characters).
Some files like the OS9Boot file contain binary data such as machine language programs. These files
are called “binary files”, and attempts to list them will result in a jumbled, meaningless display. On
the other hand, OS-9 will complain mightily if you try to run a text file as a program!

As you may have surmised by now, the way you ask OS-9 to run a program or command (they're
really the same thing) is to simply type its name. Some commands like list require one or more names
of files or options. If so, they are typed on the same line using spaces to separate each item.

Making a Backup of the System Disk

3

But where did the list and dir programs come from? There are really more files on the disk than you
suspect. The dir command showed you what is the disk's root directory - so named because the OS-9
filing system resembles a tree. Growing out of the root directory are three “branches” - files which
are additional directories of file names instead of programs or data. They in turn can have even more
“branches” - ad infinitum. If you draw a map on paper of how this works it does look like a tree.

The directory files on your system disk are called CMDS, SYS, and DEFS. The file CMDS is a directory
that consists of all the system commands such as dir, list, format, etc. To see the files contained in
this directory, enter:

dir cmds

which tells dir to show files on the directory file CMDS instead of the root directory. After you type
this you should see a long list of file names. These are the complete set of command programs that
come with OS-9 and perform a myriad of functions. Chapter Seven explains each one in detail. The
dir command also has a handy option to display the CMDS directory with less typing:

dir x

Whenever you want a list of available commands you can use this so you don't have to look it up in the
book. The dir command has options which can give you more detailed information about each file.

1.2. Making a Backup of the System Disk
Before getting too much more involved in further experimentation, NOW is the time to make one or
more exact copies of your System Disk in case some misfortune befalls your one and only master
System Disk. Making a backup involves two steps: formatting a blank disk and running a backup
program.

1.2.1. Formatting Blank Disks

Before the actual backup procedure can be done (or any fresh diskette is used for any purpose), the
blank disk which is to become the backup disk must be initialized by OS-9's format command.

IF YOU HAVE ONLY ONE DISK DRIVE you have to be extra careful not to accidentally FORMAT
your system disk. Type:

format /d0

and when you see the message

COLOR COMPUTER FORMATTER
Formatting drive /d0
y (yes) or n (no)
Ready?

immediately remove your system disk and insert a blank disk before you type Y . IF YOU HAVE
TWO DISK DRIVES place the blank disk in drive one and type:

format /d1

WHEN THE BLANK DISK IS IN THE RIGHT PLACE, type Y , then ENTER . This initiates the
formatting process. IF THE CORRECT DEVICE NAME (/D1) IS NOT DISPLAYED: TYPE N

RIGHT NOW and start over, OR YOU MAY ERASE your System Disk.

Running the Backup Program

4

When you are asked for a disk name, type any letter, then ENTER . The name you give is not important.
If you have only one drive, replace the system disk after the format program has finished. If the
format program reported any errors, try again. Disks used for backups can't have any errors. You're
now ready to run the backup program.

It takes several minutes for the format program to run. During its second phase the hexadecimal
number of each track will be displayed as it is checked for bad sectors. If any are found an error
message for each bad sector is given.

1.2.2. Running the Backup Program

The backup program makes an exact duplicate of a disk. It can be used even if you only have one
disk drive.

IF YOU HAVE ONE DRIVE type

backup /d0 #32k

The backup program will prompt you to alternately insert the source disk (the system disk) and the
destination disk (the freshly formatted disk).

IF YOU HAVE TWO DRIVES type

backup #32K

The backup program will respond with

Ready to backup from /d0 to /d1?

Now enter Y for yes. It will then ask:

X is being scratched
Ok ?:

Answer Y for yes again, and the backup process should begin.

The backup command has two phases: the first phase copies everything from drive zero to drive one
checking for errors while reading from the master but not for “write” errors. The second phase is the
“verify” pass which makes sure everything was copied onto the new disk correctly. If any errors are
reported during the first (copy) pass, there is a problem with the master disk or its drive. If errors occur
during the second (verify) pass, there is a problem with the new disk and the backup program should
be run again. If backup repeatedly fails on the second pass, reformat the disk and try to backup again.
If backup fails again, the disk is physically defective.

After you have made your backup disk, try turning the computer off and restarting the system with
the copy you just made. If it works OK, store it in a safe place in case it is needed later. You should
always have a backup copy of your system disk and all other important disks.

5

Chapter 2. Basic Interactive
Functions
2.1. Running Commands and Basic Shell Operation

The shell is a the part of OS-9 that accepts commands from your keyboard. It was designed to provide a
convenient, flexible, and easy-to-use interface between you and the powerful functions of the operating
system. The shell is automatically entered after OS-9 is started up. You can tell when the shell is
waiting for input because it displays the shell prompt. This prompt indicates that the shell is active and
awaiting a command from your keyboard. It makes no difference whether you use upper-case letters,
lower-case letters, or a combination of both because OS-9 matches letters of either case.

The command line always begins with a name of a program which can be:

• The name of a machine language program on disk

• The name of a machine language program already in memory

• The name of an executable program compiled by a high-level language such as Basic09, Pascal,
Cobol, etc.

• The name of a procedure file

If you're a beginner, you will almost always use the first case, which causes the program to be
automatically loaded from the CMDS directory and run.

When processing the command line, the shell searches for a program having the name specified in
the following sequence:

1. If the program named is already in memory, it is run.

2. The “execution directory”, usually CMDS, is searched. If a file having the name given is found, it
is loaded and run.

3. The user's “data directory” is searched. If a file having the name given is found, it is processed as a
“procedure file” which means that the file is assumed to contain one or more command lines which
are processed by the shell in the same manner as if they had manually typed in one by one.

Mention is made above of the “data directory” and the “execution directory”. At all times each user is
associated with two file directories. A more detailed explanation of directories is presented later. The
execution directory (usually CMDS) includes files which are executable programs.

The name given in the command line may be optionally followed by one or more “parameters” which
are passed to the program called by the shell.

For example, in the command line:

list file1

the program name is list, and the parameter passed to it is FILE1.

A command line may also include one or more “modifiers” which are specifications used by the shell
to alter the program's standard input/output files or memory assignments.

2.1.1. Sending Output to the Printer

Normally, most commands and programs display output on the computer video display. The output
of these programs can alternatively be printed by specifying output redirection on the command line.
This is done by including the following modifier to at the end of any command line:

Shell Command Line Parameters

6

>/p

The “>” character tells the shell to redirect output (See Section 4.3.2, “Concurrent Execution”) to the
printer using the computer's printer port, which has the device name “/P” (See Section 3.3, “I/O Device
Names”). For example, to redirect the output of the dir command to the printer, enter:

dir >/p

The xmode command can be used to set the printer port's operating mode such as auto line feed, etc.
For example, to examine the printer's current settings, type:

xmode /p

To change any of these type XMODE followed by the new value. For example, to set the printer port
for automatic line feeds at the end of every line, enter:

xmode /p lf;

2.2. Shell Command Line Parameters
Parameters are generally used to either specify file name(s) or to select options to be used by the
program specified in the command line given to the shell. Parameters are separated from the command
name and from each other by space characters (hence parameters and options cannot themselves
include spaces). Each command program supplied with OS-9 has an individual description in the last
section of this manual which describe the correct usage of the parameters of each command.

For example, the list program is used to display the contents of a text file on your display. It is necessary
to tell to the list program which file it is to be displayed, therefore, the name of the desired file is given
as a parameter in the command line. For example, to list the file called startup (the system initialization
procedure file), you enter the command line:

list startup

Some commands have two parameters. For example, the copy command is used to make an exact
copy of a file. It requires two parameters: The name of the file to be copied and the name of the file
which is to be the copy, for example:

copy startup newstartup

Other commands have parameters which select options. For example:

dir

shows the names of the files in the user's data directory. Normally it simply lists the file names only,
but if the “e” (for entire) option is given, it will also give complete statistics for each file such as the
date and time created, size, security codes, etc. To do so enter:

dir e

The dir command also can accept a file name as a parameter which specifies a directory file other
than the (default) data directory. For example, to list file names in the directory sys , type:

dir sys

Some Common Command Formats

7

It is also possible to specify both a directory name parameter and the e option, such as:

dir sys e

giving file names and complete statistics.

2.3. Some Common Command Formats
This section is a summary of some commands commonly used by new or casual OS-9 users, and
some common formats. Each command is followed by an example. Refer to the individual command
descriptions later int his book for more detailed information and additional examples. Parameters or
options shown in brackets are optional. Whenever a command references a directory file name, the
file must be a directory file.

CHD filename chd DATA.DIR

Changes the current data working directory to the directory file specified.

COPY filename1 filename2 copy oldfile newfile

Creates filename2 as a new file, then copies all data from “filename1” to it. “filename1” is not affected.

DEL filename del oldstuff

Deletes (destroys) the file specified.

DIR [filename] [e] [x] dir myfiles e

List names of files contained in a directory. If the “x” option is used the files in the current execution
directory are listed, othervise, if no directory name is given, the current data directory will be listed.
The “e” option selects the long format which shows detailed information about each file.

FREE devicename free /d1

Shows how much free space remains on the disk whose name is given.

LIST filename list script

Displays the (text) contents of the file on the terminal.

MAKDIR filename makdir NEWFILES

Creates a new directory file using the name given. Often followed by a chd command to make it the
new working data directory.

RENAME filename1 filename2 rename zip zap

Changes the name of filename1 to filename2.

2.4. Using the Keyboard and Video Display
OS-9 has many features to expand the capability of the computer keyboard and video display. The
video display has screen pause, upper/lower case, and graphics functions. The keyboard can generate

Video Display Functions

8

all ASCII characters and has a type-ahead feature that permits you to enter data before requested by a
program (except if the disk is running because interrupts are temporarily disabled). Appendix B, VDG
Display System Functions of this manual is a list of the characters and codes that can be generated
from the keyboard. The keyboard/video display can be used as a file known by the name “/TERM”.

2.4.1. Video Display Functions

The computer uses reverse video (green letters in a black box) to represent lower-case letters. Normally
they are not used, so you have to turn them on if you want to use them with the command:

tmode -upc

The screen pause feature stops programs after 16 lines have been displayed. Output will continue if you
hit any key. Normally this feature is on. It can be turned on or off with the tmode command as follows:

tmode -pause turns pause mode off
tmode pause turns pause mode on

The display system also has a complete set of commands to emulate commercial data terminals, plus
a complete set of graphics commands. These are described in detail in Appendix C, Key Definitions
With Hexadecimal Values.

2.4.2. Keyboard Shift and Control Functions

Two keys are used in combination with other keys to change their meaning. The SHIFT key selects
between upper case and lower case letters or punctuation, and the CTRL1 key can be used to generate
“control characters”.

The keyboard has a shift lock function similar to a typewriter's, which is normally “locked”. The
keyboard's shift lock may be reversed by depressing the control key and 0 keys simultaneously. The
shift lock only affects the letter (A-Z) keys. When the keyboard is locked, these keys generate upper
case letters, and lower case only if the SHIFT key is depressed. When the keyboard is unlocked, the
reverse is true, e.g., lower case letters are generated unless the SHIFT key is depressed at the same
time as a letter key.

2.4.3. Control Key Functions

There are a number of useful control functions that can be generated from the keyboard. Many of
these functions use “control keys” which are generated by simultaneously depressing the CTRL key
plus some other key. For example, to generate the character for CONTROL+D press the CTRL and D

keys at the same time.

CONTROL+A Repeat previous input line. The last line entered will be
redisplayed but not processed, with the cursor positioned at the
end of the line. You may hit return to enter the line, or edit the
line by backspacing, typing over characters to correct them, and
entering control A again to redisplay the edited line.

CONTROL+D Redisplay present input on next line.

CONTROL+W Display Wait - This will temporarily halt output to the display
so the screen can be read before the data scrolls off. Output is
resumed when any other key is hit.

CONTROL+0 Shift lock. Reverses present shift lock state.

1 The Color Computer models 1 & 2, and the Dragon 64 computers use the CLEAR key as there is no CTRL key.

Control Key Functions

9

BREAK (or CONTROL+E) Program abort - Stops the current running program

SHIFT+BREAK (or CONTROL+C) Interrupt - Reactivates Shell while keeping program running as
background task.

CONTROL+BREAK (ESCAPE) End-of-File - This key is used to send an end-of-file to
programs that read input from the terminal in place of a disk or
tape file. It must be the first character on the line in order for
it to be recognized.

← (or CONTROL+H) Backspace - erase previous character

SHIFT+← (or CONTROL+X) Line Delete - erases the entire current line.

10

11

Chapter 3. The OS-9 File System
3.1. Introduction to the Unified Input/Output System

OS-9 has a unified input/output system in which data transfers to ALL I/O devices are performed
in almost exactly the same manner, regardless of the particular hardware devices involved. It may
seem that the different operational characteristics of the I/O devices might make this difficult. After
all, line printers and disk drives behave much differently. However, these differences can mostly be
overcome by defining a set of standardized logical functions for all devices and by making all I/O
devices conform to these conventions, using software routines to eliminate hardware dependencies
wherever possible. This produces a much simpler and more versatile input/output system.

OS-9's unified I/O system is based upon logical entities called “I/O paths”. Paths are analogous to
“software I/O channels” which can be routed from a program to a mass-storage file, any other I/O
device, or even another program. Another way to say the same thing is that paths are files, and all I/
O devices behave as files.

Data transferred through paths may be processed by OS-9 to conform to the hardware requirements of
the specific I/O device involved. Data transfers can be either bidirectional (read/write) or unidirectional
(read only or write only), depending on the device and/or how the path was established.

Data transferred through a path is considered to be a stream of 8-bit binary bytes that have no specific
type or value: what the data actually represents depends on how it is used by each program. This is
important because it means that OS-9 does not require data to have any special format or meaning.

Some of the advantages of the unified I/O system are:

• Programs will operate correctly regardless of the particular I/O devices selected and used when the
program is actually executed.

• Programs are highly portable from one computer to another, even when the computers have different
kinds of I/O devices.

• I/O can be redirected to alternate files or devices when the program is run, without having to alter
the program.

• New or special device driver routines can easily be created and installed by the user.

3.2. Pathlists: How Paths Are Named
Whenever a path is established (or “opened”), OS-9 must be given a description of the “routing” of
the path. This description is given in the form of a character string called a “pathlist”. It specifies
a particular mass-storage file, directory file, or any other I/O device. OS-9 “pathlists” are similar to
“filenames” used by other operating systems.

The name “pathlist” is used instead of “pathname” or “filename” because in many cases it is a list
consisting of more than one name to specify a particular I/O device or file. In order to convey all the
information required, a pathlist may include a device name, one or more directory file names and a
data file name. Each name within a pathlist is separated by slash “/” characters.

Names are used to describe three kinds of things:

• Names of Physical I/O Devices

• Names of Regular Files

• Names of Directory Files

I/O Device Names

12

Names can have one to 29 characters, all of which are used for matching. They must begin with an
upper- or lower-case letter followed by any combination of the following characters:

uppercase letters: A - Z
lowercase letters: a - z
decimal digits: 0 - 9
underscore: _
period: .

Here are examples of legal names:

raw.data.2 projectreview.backup

reconciliation.report X042953

RJJones search.bin

Here are examples of illegal names:

22November (does not start with a letter)

max*min (* is not a legal character)

.data (does not start with a letter)

open orders (cannot contain a space)

this.name.obviously.has.more.than.29.characters (too long)

3.3. I/O Device Names
Each physical input/output device supported by the system must have a unique name. The actual names
used are defined when the system is set up and cannot be changed while the system is running. The
device names used for the computer are:

TERM Video display/keyboard

P Printer port

D0 Disk drive unit zero

D1 Disk drive unit one

PIPE Pipes

Device names may only be used as the first name of a pathlist, and must be preceded by a slash “/”
character to indicate that the name is that of an I/O device. If the device is not a disk or similar device
the device name is the only name allowed. This is true for devices such as terminals, printers, etc.
Some examples of of pathlists that refer to I/O devices are:

/TERM
/P
/D1

I/O device names are actually the names of the “device descriptor modules” kept by OS-9 in an internal
data structure called the “module directory” (See the OS-9 System Programmer's Manual for more
information about device driver and descriptor modules). This directory is automatically set up during
OS-9's system start up sequence, and updated as modules are added or deleted while the system is
running.

3.4. Multifile Devices And Directory Files
Multifile devices are mass storage devices (usually disk systems) that store data organized into separate
logical entities called “files”. Each file has a name which is entered in a directory file. Every multifile

Creating and Using Directories

13

device has a master directory (called the “root directory”) that includes the names of the files and sub-
directories stored on the device. The root directory is created automatically when the disk is initialized
by the format command.

Pathlists that refer to multifile devices may have more than one name. For example, to refer to the
file “mouse” whose name appears in the root directory of device “D1” (disk drive one) the following
pathlist is used:

/d1/mouse

When OS-9 is asked to create a path, it uses the names in the pathlist sequentially from left to right to
search various directories to obtain the necessary routing information. These directories are organized
as a tree-structured hierarchy. The highest-level directory is called the “device directory”, which
contains names and linkages to all the I/O devices on a given system. If any of the devices are of a
multifile type they each have a root directory, which is the next-highest level.

The diagram below is a simplified file system tree of a typical OS-9 system disk. Note that device
and directory names are capitalized and ordinary file names are not. This is a customary (but not
mandatory) practice which allows you to easily identify directory files using the short form of the
dir command.

 System Device Directory
 +---------------------------------+
 ! ! ! !
 D0 TERM P D1
 ! !
 ! !
 ! !
 D0 Root Directory D1 Root Directory
 +----------------------+ +----------------------+
 ! ! ! ! ! !
DEFS startup CMDS file1 file2 file3
 ! !
 ! !
 ! !
--+-- +-----+----+-----+-----+
 ! ! ! ! ! !
OS9Defs copy list dir del backup

The device names in this example system are “TERM”, “P”, “D0” and “D1”. The root directory of
device “D0” includes two directory files, DEFS and CMDS, and one ordinary file “startup”. Notice that
device “D1” has in its root directory three ordinary files. In order to access the file “file2” on device
“d1”, a pathlist having two names must be used:

list /d1/file2

To construct a pathlist to access the file “dir” on device “d0” it is necessary to include in the pathlist
the name of the intermediate directory file CMDS. For example, to copy this file requires a pathlist
having three names to describe the “from” file:

copy /d0/cmds/dir temp

3.5. Creating and Using Directories
It is possible to create a virtually unlimited number of levels of directories on a mass storage device
using the makdir command. Directories are a special type of file (see Section 3.9.1, “Examining and

Creating and Using Directories

14

Changing File Attributes”). They can be processed by the same I/O functions used to access regular
files which makes directory-related processing fairly simple.

To demonstrate how directories work, assume that the disk in drive one (“d1”) has been freshly
formatted so that it has a root directory only. The build command can be used to create a text file on
“d1”. The build command will print out “?” as a prompt to indicate that it is waiting for a text line
to be entered. It will place each line into the text file until an empty line with only a carriage return
is entered, as shown below:

OS9: build /d1/file1
? This is the first file that
? we created.
? [ENTER]

The dir command will now indicate the existence of the new file:

OS9: dir /d1

 Directory of /d1 15:45:29
file1

The list command can be used to display the text stored in the file:

OS9: list /d1/file1

This is the first file
that we created.

The build command again is again used to create two more text files:

OS9: build /d1/file2
? This is the second file
? that we created.
? [ENTER]

OS9: build /d1/file3
? This is another file.
? [ENTER]

The dir command will now show three file names:

OS9: dir /d1
 Directory of /D1 15:52:29
file1 file2 file3

To make a new directory in this directory, the makdir command is used. The new directory will
be called NEWDIR. Notice that throughout this manual directory names are always capitalized. This
is not a requirement of OS-9 (see Section 3.2, “Pathlists: How Paths Are Named”). Rather, it is a
practice popular with many OS-9 users because it allows easy identification of directory files at all
times (assuming all other file names use lower-case letters).

OS9: makdir /D1/NEWDIR

The directory file NEWDIR is now a file listed in D1's root directory:

Deleting Directory Files

15

OS9: dir /D1

 Directory of /D1 16:04:31
file1 file2 file3 NEWDIR

Now we will create a new file and put in the new directory, using the copy command to duplicate
file1:

OS9: copy /d1/file1 /d1/newdir/file1.copy

Observe that the second pathlist now has three names: the name of the root directory (“D1”), the name
of the next lower directory (NEWDIR), then the actual file name (file1.copy). Here's what the
directories look like now:

 D1 Root Directory
 +---------+--------+--------+
 ! ! ! !
 NEWDIR file1 file2 file3
 !
 !
file1.copy

The dir command can now show the files in the new directory:

OS9: dir /D1/NEWDIR

 Directory of /D1/NEWDIR
file1.copy

It is possible to use makdir to create additional new directories within NEWDIR, and so on, limited
only by available disk space.

3.6. Deleting Directory Files
The del command cannot be used to directly delete a directory file. If a directory file that still contained
file names were to be deleted, OS-9 would have no way to access the files or to return their storage
to the unallocated storage pool. Therefore, the following sequence must be performed to delete a
directory file:

1. All file names in the directory must be deleted.

2. The attr command is used to turn off the files directory attrribute (-d option), making it an ordinary
file (see Section 3.9, “The File Security System”).

3. The file may now be deleted using the del command.

A simpler alternative is to use the deldir command to automatically perform all these steps for you.

3.7. Additional Information About Directories
The OS-9 directory system is very useful because it allows each user to privately organize files as
desired (by project, function, etc.), without affecting other files or other user's files. Another advantage
of the hierarchical directory system is that files with identical names can be kept on the same device
as long as the names are in different directories. For example, you can have a set of test files to check
out a program using the same file names as the program's actual working files. You can then run the
program with test data or actual data simply by switching directories.

Using and Changing
Working Directories

16

Here are some important characteristics relating to use of directory files:

• Directories have the same ownership and security attributes and rules as regular files.

• The name of a given file appears in exactly one directory.

• Files can only be added to directories when they are created.

• A file and the directory in which its name is kept must reside on the same device.

3.8. Using and Changing Working Directories
Each program (process) has two “working directories” associated with it at all times: a “data directory”
and an “execution directory”. The working directory mechanism allows the name searching involved
in pathlist processing to start at any level (subtree) of the file system hierarchy. Any directory that the
user has permission to access (see Section 3.9, “The File Security System”) can be made a working
directory.

The rules used to determine whether pathlists refer to the current working directory or not are simple:

---> When the first character of a pathlist is a “/”, processing of the pathlist starts at the device directory,
e.g., the first name must be a device name.

---> When the first character of a pathlist is not a “/”, processing of the pathlist starts at the current
working directory.

Notice that pathlists starting with a “/” must be complete, in other words, they must have all names
required to trace the pathlist from the device directory down through all intermediate directories (if
any). For example:

/d2/JOE/WORKINGFILES/testresults

On the other hand, use of the current working directory allows all names in the file hierarchy tree to
be implied instead of explicitly given. This not only makes pathlists shorter, but allows OS-9 to locate
files faster because (typically) fewer directories need be searched. For example, if the current working
directory is /D1/PETE/GAMES and a pathlist is given such as:

baseball

the actual pathlist implied is:

/D1/PETE/GAMES/baseball

Pathlists using working directories can also specify additional lower-level directories. Referring to the
example above, the pathlist:

ACTION/racing

implies the complete pathlist:

/D1/PETE/GAMES/ACTION/racing

3.8.1. Automatic Selection of Working Directories

Recall that two working directories are referred to as the “current execution directory” and the “current
data directory”. The reason two working directories are maintained is so that files containing programs
can be organized in different directories than files containing data. OS-9 automatically selects either
working directory, depending on the usage of the pathlist:

---> OS-9 will search the execution directory when it attempts to load files into memory assumed to
be executable programs. This means that programs to be run as commands or loaded into memory
must be in the current execution directory.

Changing Current
Working Directories

17

---> The data directory is used for all other file references (such as text files, etc.)

Immediately after startup, OS-9 will set the data directory to be (the root directory of) the system disk
drive (usually “D0”), and the working directory to be a directory called cmds on the same drive (/D0/
cmds). On timesharing systems, the login command selects the initial execution and data directories
to the file names specified in each user's information record stored in the system password file(ref.
Section 5.4.2, “Loading Multiple Programs”).

Here is an example of a shell command statement using the default working directory notation, and
its equivalent expansion:

copy file1 file2

If the current execution directory is /D0/CMDS and the current data directory is /D0/JONES, the
same command, fully expanded to show complete pathlists implied is:

OS9: /D0/CMDS/copy /D0/JONES/filel /D0/JONES/file2

Notice that the first pathlist copy expands to the current working directory pathlist because it is
assumed to be an executable program but the two other file names expand using the data directory
because they are not assumed to be executable.

3.8.2. Changing Current Working Directories

The built-in shell commands chd and chx can be used to independently change the current working
data and execution directories, respectively. These command names must be followed by a pathlist
that describes the new directory file. You must have permission to access the directory according to
normal file security rules. Here are some examples:

OS9: chd /D1/MY.DATAFILES

OS9: chx /D0/TESTPROGRAMS

When using the chd or chx commands, pathlists work the same as they do for regular files, except
for the last name in the pathlist must be a directory name. If the pathlist begins with a “/” , OS-9
will begin searching in the device directory for the new working directory, otherwise searching will
begin with the present directory. For example, the following sequence of commands set the working
directory to the same file:

OS9: CHD /D1/SARAH
OS9: CHD PROJECT1

OS9: CHD /D1/SARAH/PROJECT1 (same effect as above)

3.8.3. Anonymous Directory Names

Sometimes is useful to be able to refer to the current directory or the next higher-level directory, but
its name (full pathlist) may not be known. Because of this, special “name substitutes” are available.
They are:

. refers to the present working directory

.. refers to the directory that contains the name of
the present directory (e.g., the next highest level
directory)

... refers to directory two levels up, and so on

The File Security System

18

These can be used in place of pathlists and/or the first name in a pathlist. Here are some examples:

OS9: dir . lists file names in the working data directory

OS9: dir .. lists names in the working data directory's parent
directory.

OS9: del ../temp deletes the file temp from the working data
directory's parent directory.

The substitute names refer to either the execution or data directories, depending on the context in
which they are used. For example, if .. is used in a pathlist of a file which will be loaded and/or
executed, it will represent the parent directory of the execution directory. Likewise, if . is used in a
pathlist describing a program's input file, it will represent the current data directory.

3.9. The File Security System
Every file (including directory files) has properties called ownership and attributes which determine
who may access the file and how it many be used.

OS-9 automatically stores with each file the user number associated with the process that created it.
This user is considered to be the “owner” of the file.

Usage and security functions are based on “attributes”, which define how and by whom the file can be
accessed. There are a total of seven attributes, each of which can be turned “off” or “on” independently.
The “d” attribute is used to indicate (when on) that the file is a directory file. The other six attributes
control whether the file can be read, written to, or executed, by either the owner or by the “public”
(all other users). Specifically, these six attributes are:

WRITE PERMISSION FOR OWNER: If on, the owner may write to the file or delete it. This
permission can be used to protect important files from accidental deletion or modification.

READ PERMISSION FOR OWNER: If on, the owner is allowed to read from the file. This can be
used to prevent “binary” files from being used as “text” files

EXECUTE PERMISSION FOR OWNER: If on, the owner can load the file into memory and execute
it. Note that the file must contain one or more valid OS-9 format memory modules in order to actually
load

The following “public permissions” work the same way as the “owner permissions” above but are
applied to processes having DIFFERENT user numbers than the file's owner.

WRITE PERMISSION FOR PUBLIC - If on, any other user may write to or delete the file.

READ PERMISSION FOR PUBLIC - If on, any other user may read (and possibly copy) the file.

EXECUTE PERMISSION FOR PUBLIC - If on, any other user may execute the file.

For example, if a particular file had all permissions on except “write permit to public” and “read permit
to public”, the owner would have unrestricted access to the file, but other users could execute it, but
not read, copy, delete, or alter it.

3.9.1. Examining and Changing File Attributes

The dir command may be used to examine the security permissions of the files in any particular
directory when the “e” option is used. An example using the dir e command to show the detailed
attributes of the files in the current working directory is:

 Directory of . 10:20:44

Reading and Writing From Files

19

Owner Last Modified Attributes Sector Bytecount Name
----- ------------- ---------- ------ --------- ----
 1 81/05/29 1402 --e--e-r 47 42 file1
 0 81/10/12 0215 ---wr-wr 48 43 file2
 3 81/04/29 2335 -s----wr 51 22 file3
 1 82/01/06 1619 d-ewrewr 6D 800 NEWDIR

This display is fairly self-explanatory. The “attributes” column shows which attributes are currently
on by the presence or absence of associated characters in the following format:

dsewrewr

The character positions correspond to from left to right: directory; sharable; public execute; public
write; public read; owner execute; owner write; owner read. The attr command is used to examine
or change a file's attributes. Typing attr followed by a file name will result in the present attributes
to be displayed, for example:

OS9: attr file2
-s-wr-ewr

If the command is used with a list of one or more attribute abbreviations, the file's attributes will be
changed accordingly (if legal). For example, the command:

OS9: attr file2 pw pr -e -pe

enables public write and public read permissions and removes execute permission for both the owner
and the public.

The “directory” attribute behaves somewhat differently than the read, write, and execute permissions.
This is because it would be quite dangerous to be able to change directory files to normal files, and
creation of a directory requires special initialization. Therefore, the attr command cannot be used to
turn the directory (d) attribute on (only makdir can), and can be used to turn it off only if the directory
is empty.

3.10. Reading and Writing From Files
A single file type and format is used for all mass storage files. Files store an ordered sequence of 8-
bit bytes. OS-9 is not usually sensitive to the contents of files for most functions. A given file may
store a machine language program, characters of text, or almost anything else. Data is written to and
read from files exactly as given. The file can be any size from zero up to the maximum capacity of
the storage device, and can be expanded or shortened as desired.

When a file is created or opened a “file pointer” is established for it. Bytes within the file are addressed
like memory, and the file pointer holds the “address” of the next byte in the file to be written to or
read from. The OS-9 “read” and “write” service functions always update the pointer as data transfers
are performed. Therefore, successive read or write operations will perform sequential data transfers.

Any part of a file can also be read or written in non-sequential order by using a function called “seek”
to reposition the file pointer to any byte address in the file. This is used when random access of the
data is desired.

To expand a file, you can simply write past the previous end of the file. Reading up to the last byte of
a file will cause the next “read” request to return an end-of-file status.

3.10.1. File Usage in OS-9

Even though there is physically only one type of file, the logical usage of files in OS-9 covers a broad
spectrum. Because all OS-9 files have the same physical type, commands such as copy, del, etc., can

Text Files

20

be used with any file regardless of its logical usage. Similarly, a particular file can be treated as having
a different logical usage at different times by different programs. The main usage of files covered in
this section are:

TEXT
RANDOM ACCESS DATA
EXECUTABLE PROGRAM MODULES
DIRECTORIES
MISCELLANEOUS

3.10.2. Text Files

These files contain variable-length sequences (“lines”) of ASCII characters. Each line is terminated
by a carriage return character. Text files are used for program source code, procedure files, messages,
documentation, etc. The Text Editor operates on this file format.

Text files are usually read sequentially, and are supported by almost all high-level languages (such
as BASIC09 READ and WRITE statements). Even though is is possible to randomly access data at
any location within a text file, it is rarely done in practice because each line is variable length and it
is hard to locate the beginning of each line without actually reading the data to locate carriage return
characters.

The content of text files may be examined using the list command.

3.10.3. Random Access Data Files

Random-access data files are created and used primarily from within high-level languages such as
Basic09, Pascal, C, and Cobol. In Basic09 and Pascal, “GET”, “PUT”, and “SEEK” functions operate
on random-access files.

The file is organized as an ordered sequence of “records”. Each record has exactly the same length,
so given a record's numerical index, the record's beginning address within the file can be computed
by multiplying the record number by the number of bytes used for each record. Thus, records can be
directly accessed in any order.

In most cases, the high-level language allows each record to be subdivided into “fields”. Each field
generally has a fixed length and usage for all records within the file. For example, the first field of
a record may be defined as being 25 text characters, the next field may be two bytes long and used
to hold 16-bit binary numbers, etc.

It is important to understand that OS-9 itself does not directly process or deal with records other than
providing the basic file functions required by all high-level languages to create and use random-access
files.

3.10.4. Executable Program Module Files

These files are used to hold program modules generated by the assembler or compiled by high-level
languages. Each file may contain one or more program modules.

OS-9 program modules resident in memory have a standard module format that, besides the object
code, includes a “module header” and a CRC check value. Program module(s) stored in files contain
exact binary copies of the programs as they will exist in memory, and not one byte more. OS-9 does
not require a “load record” system commonly used by other operating systems because OS-9 programs
are position-independent code and therefore do not have to be loaded into specific memory addresses.

In order for OS-9 to load the program module(s) from a file, the file itself must have execute permission
and each module must have a valid module header and CRC check value. If a program module has
been altered in any way, either as a file or in memory, its CRC check value will be incorrect And OS-9
will refuse to load the module. The verify command can be used to check the correctness of the check
values, and update them to corrected values if necessary.

Directory Files

21

On Level One systems, if a file has two or more modules, they are treated as independent entities after
loading and reside at different memory regions. On Level Two systems, two or more modules loaded
from the same file comprise a “group”, are always assigned contiguous memory locations, and are
treated somewhat collectively. (See Section 5.4.2, “Loading Multiple Programs”)

Like other files that contain “binary” data, attempts to “list” program files will result in the display of
random characters on the terminal giving strange effects. The dump command can be used to safely
examine the contents of this kind of file in hexadecimal and controlled ASCII format.

3.10.5. Directory Files

Directory files play a key role in the OS-9 file system. They can only be created by the makdir
command, and can be identified by the “d” attribute being set (see Section 3.9.1, “Examining and
Changing File Attributes”). The file is organized into 32-byte records. Each record can be a directory
entry. The first 29 bytes of the record is a string of characters which is the file name. The last character
of the name has its sign bit (most significant bit) set. If the record is not in use the first character
position will have the value zero. The last three bytes of the record is a 24-bit binary number which is
the logical sector number where the file header record (see Section 3.11, “Physical File Organization”)
is located.

The makdir command initializes all records in a new directory to be unused entries except for the
first two entries. These entries have the names . and .. along with the logical sector numbers of the
directory and its parent directory, respectively (see Section 3.8.3, “Anonymous Directory Names”).

Directories cannot be copied or listed - the dir command is used instead. Directories also cannot be
deleted directly (see Section 3.6, “Deleting Directory Files”).

3.10.6. Miscellaneous File Usage

OS-9's basic file functions are so versatile it is possible to devise an almost unlimited number of
special-purpose file formats for particular applications, which do not fit into any of the three previously
discussed categories.

Examples of this category are COBOL Indexed Sequential (ISAM) files and some special word
processor file formats which allow random access of text lines. As discussed in Sec. 3.9.1, most
OS-9 utility commands work with any file format including these special types. In general, the dump
command is the preferred method for examining the contents of unusually formatted files.

3.10.7. Record Lockout (Level Two Only)

When a file is accessed by two or more processes simultaneously, the possibility exists that they may
attept to update the same record of the file at the same time, with unpredictable results. To avoid this
potential problem, OS-9 Level Two automatically “locks” sections of all files opened in “update”
mode. The lock covers any disk sectors containing the bytes last read by each process accessing the
file. If another process attempts to access a locked portion of a file, the process is put to sleep until
the area is no longer locked.

A lock is moved when the locking process reads or writes an area of the same file outside the previously
locked section. They are terminated when the process associated with the lock closes its path to the
file. Each process can lock one area per file (but cna have locks on more than one file).

An entire file can be locked by activating its “sharable” bit (see Section 3.9.1, “Examining and
Changing File Attributes”). When this attribute is on, only one process may open a path to the file at
any given time. Any other processes attempting to access the file will receive an error code.

3.11. Physical File Organization
OS-9's file system implements a universal logical organization for all I/O devices that effectively
eliminates most hardware-related considerations for most applications. This section gives basic

Physical Sector I/O

22

information about the physical file structure used by OS-9. For more information, see the OS-9 System
Programmer's Manual.

Each OS-9 file is comprised of one or more sectors which are the physical storage units of the disk
systems. Each sector holds exactly 256 data bytes, and disk is numbered sequentially starting with
sector zero, track zero. This number is called a “logical sector number”, or LSN. The mapping of
logical sector numbers to physical track/sector numbers is done by the disk driver module.

Sectors are the smallest allocatable physical unit on a disk system, however, to increase efficiency on
some larger-capacity disk. systems, OS-9 uses uniform-sized groups of sectors, called clusters, as the
smallest allocatable unit. Cluster sizes are always an integral power of two (2, 4, 8, etc.). One sector
of each disk is used as a bitmap (usually LSN 1), in which each data bit corresponds to one cluster on
the disk. The bits are set and cleared to indicate which clusters are in use (or defective), and which
are free for allocation to files.

A 5.25 inch floppy disk system uses the following format:

• double density recording on one side
• 40 tracks per disk
• 18 sectors per track
• one sector per cluster

Each file has a directory entry (see Section 3.10.5, “Directory Files”) which includes the file name and
the logical sector number of the file's “file descriptor sector”, which contains a complete description
of the file including:

• attributes
• owner
• date and time created
• size
• segment list (description of data sector blocks)

Unless the file size is zero, the file will have one or more sectors/clusters used to store data. The data
sectors are grouped into one or more contiguous blocks called “segments”. The segment list portion
of the header sector consists one record for each segment. The record contains the starting logical
sector number and size (number of sectors/clusters) of each segment. Therefore, the segment list has
all the information OS-9 needs to determine the sector number of any of the file's sectors (and therfore,
data bytes).

If the various segments that comprise a file are physically scattered on the disk, the disk head must
travel more often and greater distances, especially when reading records from random access files (see
Section 3.10.3, “Random Access Data Files”), thus degrading file access time. Therefore, OS-9's disk
allocation strategy is to minimize the number of segments if possible. It can do so more effectively if
programs cause larger amounts of storage to be allocated at a time. If a file is to have a fixed size which
is known beforehand, a program can cause all storage to be allocated by performing a “seek” to the
last byte to be used by the file, then writing dummy data to the last byte. This causes all storage to be
allocated in one operation which allows OS-9 to find the most optimum segment sizes and locations.

If files are expanded at many different times, or the disk storage becomes badly fragmented, access
time increases. When this happens, files should be copied (using dsave or copy but not backup) to
a freshly formatted disk.

3.12. Physical Sector I/O
A special pathlist can be used to perform “raw” physical I/O operations on a disk. The pathlist consists
of the device name immediately followed by an “@” character (without a “/” in between), for example:

/d1@

Physical Sector I/O

23

When this pathlist is used, the entire disk media is treated as one logical file. Any byte or sector on
the disk can be read or written without regard for the actual file structure. This feature is widely used
by utility programs sush as dir, attr, mfree, etc., to access sectors of the disk which are not part of
data areas of a file (such as header sectors).

Warning

Use extreme caution when using physical sector I/O. Because any sector can be written on,
it is possible to severely damage the file structure and data on a disk.

Also, using “@” completely defeats the file security and record locking systems.

To convert a logical sector number of an “@1” file to a byte number, multiply the sector number by
256 (the number of bytes per sector). Conversely, the logical sector number of a byte address is the
byte address divided by 256 (integer division).

As an example, the following command will give a complete “dump” of every data byte on disk device
“d0”:

dump /d0@

24

25

Chapter 4. Advanced Features of the
Shell

The basic shell functions were introduced in a prior chapter in order to provide an understanding
of how basic OS-9 commands work. In this section the more advanced capabilities of the shell are
discussed. In addition to basic command line processing, the shell has functions that facilitate:

• I/O redirection (including filters)

• Memory Allocation

• Multitasking (concurrent execution)

• Procedure File Execution (background processing)

• Execution Control (built-in commands)

There is a virtually unlimited combination of ways these capabilities can be used, and it is impossible
to give more than a representative set of examples in this manual. You are therefore encouraged to
study the basic rules, use your imagination, and explore the possibilities on your own.

4.1. A More Detailed Description Command Line
Processing

The shell is a program that reads and processes command lines one at a time from its input path (usually
your keyboard). Each line is first scanned (or “parsed”) in order to identify and process any of the
following parts which may be present:

• A program, procedure file, or built-in command name (“verbs”)

• Parameters to be passed to the program

• Execution modifiers to be processed by the shell

Note that only the verb (the program or command name) need be present, the other parts are optional.
After the verb has been identified, the shell processes modifiers (if any). Any other text not yet
processed is assumed to be parameters and passed to the program called.

Unless the verb is a “built-in command”, the shell will run the program named as a new process (task).
It then deactivates itself until the program called eventually terminates, at which time it gets another
input line, then the process is repeated. This happens over and over until an end-of-file condition is
detected on the shell's input path which causes the shell to terminate its own execution.

Here is a sample shell line which calls the assembler:

asm sourcefile l -o >/p #12k

In this example:

asm is the verb

sourcefile l -o are parameters passed to asm

>/p is a modifier which redirects the output (listing) to the
system's printer

#12K is a modifier which requests that the process be
assigned 12K bytes of memory instead of its (smaller)
default amount.

Execution Modifiers

26

The verb must be the first name in the command line. After it has been scanned, the shell first checks
if it is a “built-in” command. If it is, it is immediately executed. Otherwise, the shell assumes it is a
program name and attempts to locate and execute it.

4.2. Execution Modifiers
Execution modifiers are processed by the shell before the program is run. If an error is detected in any
of the modifiers, the run will be aborted and the error reported. Characters which comprise modifiers
are stripped from the part(s) of the command line passed to the program as parameters, therefore, the
characters reserved for use as modifiers (# ; ! < > &) cannot be used inside parameters, but can be
used before or after the parameters.

4.2.1. Alternate Memory Size Modifier

When command programs are invoked by the shell, they are allocated the minimum amount of working
RAM memory specified in the program's module header. A module header is part of all executable
programs and holds the program's name, size, memory requirements, etc. Sometimes it is desirable
to increase this default memory size. Memory can be assigned in 256-byte pages using the modifier
“#n” where n is the decimal number of pages, or in 1024 byte increments using the modifier “#nK”.
The two examples below behave identically:

OS9: copy #8 file1 file2 (gives 8*256 = 2048 bytes)
OS9: copy #2K file1 file2 (gives 2*1024 = 2048 bytes)

4.2.2. I/O Redirection Modifiers

The second kind of modifier is used to redirect the program's “standard I/O paths” to alternate files
or devices. Well-written OS-9 programs use these paths for routine I/O. Because the programs do not
use specific file or device names, it is fairly simple to “redirect” the I/O to any file or device without
altering the program itself. Programs which normally receive input from a terminal or send output to
a terminal use one or more of the standard I/O paths as defined below:

STANDARD INPUT: This path normally passes data from the terminal's keyboard to the program.

STANDARD OUTPUT PATH: This path is normally used to output data from the program to the
terminal's display.

STANDARD ERROR OUTPUT PATH: This path is used to output routine status messages such as
prompts and errors to the terminal's display (defaults to the same device as the standard output path).
NOTE: The name “error output” is sometimes misleading since many other kinds of messages besides
errors are sent on this path.

When new processes are created, they inherit their parent process' standard I/O paths. Therefore, when
the shell creates new processes, they usually inherit its standard I/O paths. When you log-on the shell's
standard input is the terminal keyboard; the standard output and error output is the terminal's display.
When a redirection modifier is used on a shell command line, the shell will open the corresponding
paths and pass them to the new process as its standard I/O paths. There are three redirection modifiers
as given below:

< Redirect the standard input path

> Redirect the standard output path

>> Redirect the standard error output path

When redirection modifiers are used on a command line, they must be immediately followed by a
pathlist describing the file or device the I/O is to be redirected to or from. For example, the standard
output of list can be redirected to write to the system printer instead of the terminal:

OS9: list correspondence >/p

Command Separators

27

Files referenced by I/O redirection modifiers are automatically opened or created, and closed (as
appropriate) by the shell. Here is another example, the output of the dir command is redirected to the
file /D1/savelisting:

OS9: DIR >/D1/savelisting

If the list command is used on the file /D1/savelisting, output from the dir command will be
displayed as shown below:

OS9: list /d1/savelisting

 Directory of . 10:15:00
myfile savelisting file1

Redirection modifiers can be used before and/or after the program's parameters, but each modifier can
only be used once.

4.3. Command Separators
A single shell input line can request execution of more than one program. These programs may be
executed sequentially or concurrently. Sequential execution means that one program must complete its
function and terminate before the next program is allowed to begin execution. Concurrent execution
means that several programs are allowed to begin execution and run simultaneously.

4.3.1. Sequential Execution

Programs are executed sequentially when each is entered on a separate line. More than one program
can be specified on a single shell command line by separating each program name parameters
from the next one with a “;” character. For example:

OS9: copy myfile /d1/newfile ; dir >/p

This command line will first execute the copy command and then the dir command.

If an error is returned by any program, subsequent commands on the same line are not executed
(regardless of the state of the “x” option), otherwise, “;” and “return” are identical separators.

Here are some more examples:

OS9: copy oldfile newfile; del oldfile; list newfile

OS9: dir >/d1/myfile ; list temp >/p; del temp

All programs executed sequentially are in fact separate, child processes of the shell. After initiating
execution of a program to be executed sequentially, the shell enters the “wait” state until execution
of the called program terminates.

4.3.2. Concurrent Execution

The second kind of separator is the “&” which implies concurrent execution, meaning that the program
is run (as a separate, child process), but the shell does not wait for it to complete before processing
the next command.

The concurrent execution separator is therefore the means by which multiprogramming (running two
or more programs simultaneously) is accomplished. The number of programs that can run at the same
time is not fixed: it depends upon the amount of free memory in the system versus the memory
requirements of the specific programs. Here is an example:

OS9: dir >/p&

Pipes and Filters

28

&007

OS9:

This command line will cause shell to start the dir command executing, print the process ID number
(&007), and then immediately display the “OS9:” prompt and wait for another command to be entered.
Meanwhile the dir command will be busy sending a directory listing to the printer. You can display
a “status summary” of all processes you have created by using the procs command. Below is another
example:

OS9: dir >/p& list file1& copy file1 file2 ; del temp

Because they were followed by “&” separators, the dir, list, and copy programs will run concurrently,
but the del program will not run until the copy program has terminated because sequential execution
(“;”) was specified.

4.3.3. Pipes and Filters

The third kind of separator is the “!” character which is used to construct “pipelines”. Pipelines consist
of two or more concurrent programs whose standard input and/or output paths connect to each other
using “pipes”.

Pipes are the primary means-by which data is transferred from process to process (interprocess
communications). Pipes are first-in, first-out buffers that behave like mass-storage files.

I/O transfers using pipes are automatically buffered and synchronized. A single pipe may have several
“readers” and several “writers”. Multiple writers send, and multiple readers accept, data to/from the
pipe on a first-come, first-serve basis. An end-of-file will occur if an attempt is made to read from a
pipe but there are no writers available to send data. Conversely, a write error will occur if an attempt
is made to write to a pipe having no readers.

Pipelines are created by the shell when an input line having one or more “!” separators is processed.
For each “!”, the standard output of the program named to the left of the “!” is redirected via a pipe
to the standard input of the program named to the right of the “!”. Individual pipes are created for
each “!” present. For example:

OS9: update <master_file ! sort ! write_report >/p

In the example above, the program update has its input redirected from a path called master_file.
Its standard output becomes the standard input for the program sort. Its output, in turn, becomes the
standard input for the program write_report, which has its standard output redirected to the printer.

All programs in a pipeline are executed concurrently. The pipes automatically synchronize the
programs so the output of one never “gets ahead” of the input request of the next program in the
pipeline. This implies that data cannot flow through a pipeline any faster than the slowest program
can process it. Some of the most useful applications of pipelines are jobs like character set conversion,
print file formatting, data compression/decompression, etc. Programs which are designed to process
data as components of a pipeline are often called “filters”. The tee command, which uses pipes to allow
data to be simultaneously “broadcast” from a single input path to several output paths, is a useful filter.

4.4. Command Grouping
Sections of shell input lines can be enclosed in parentheses which permits modifiers and separators
to be applied to an entire set of programs. The shell processes them by calling itself recursively (as a
new process) to execute the enclosed program list. For example:

OS9: (dir /d0; dir /d1) >/p

gives the same result as:

Built-in Shell
Commands and Options

29

OS9: dir /d0 >/p; dir /d1 >/p

except for the subtle difference that the printer is “kept” continuously in the first example; in the second
case another user could “steal” the printer in between the dir commands.

Command grouping can be used to cause a group of programs to be executed sequentially, but also
concurrently with respect to the shell that initiated them, such as:

OS9: (del file1; del file2; del file3)&

A useful extension of this form is to construct pipelines consisting of sequential and/or concurrent
programs. For example:

OS9: (dir CMDS; dir SYS) ! makeuppercase ! transmit

Here is a very practical example of the use of pipelines. Recall that the dsave command generates a
procedure file to copy all the files in a directory. The example below shows how the output of dsave can
be pipelined to a shell which will execute the OS-9 commands as they are generated by dsave. Assume
that we want to copy all files from a directory called WORKING to a directory called ARCHIVE:

OS9: chd /d0/WORKING; dsave ! (chd /d0/ARCHIVE)

4.5. Built-in Shell Commands and Options
When processing input lines, the shell looks for several special names of commands or option switches
that are built-in the shell. These commands are executed without loading a program and creating a
new process, and generally affect how the shell operates. They can be used at the beginning of a line,
or following any program separator (“;”, “&”, or “!”). Two or more adjacent built-in commands can
be separated by spaces or commas.

The built-in commands and their functions are:

chd pathlist change the working data directory to the directory specified by
the pathlist.

chx pathlist change the working execution directory to the directory
specified by the pathlist.

ex name directly execute the module named. This transforms the shell
process so it ceases to exist and a new module begins execution
in its place.

w wait for any process to terminate.

* text comment: “text” is not processed.

kill Proc ID abort the process specified.

setpr Proc ID
priority

changes process' priority.

x causes shell to abort on any error (default)

-x causes shell not to abort on error

p turns shell prompt and messages on (default)

-p inhibits shell prompt and messages

t makes shell copy all input lines to output

-t does not copy input lines to output (default)

The change directory commands switch the shell's working directory and, by inheritance, any
subsequently created child process. The ex command is used where the shell is needed to initiate
execution of a program without the overhead of a suspended shell process. The name used is processed
according to standard shell operation, and modifiers can be used.

Shell Procedure Files

30

4.6. Shell Procedure Files
The shell is a reentrant program that can be simultaneously executed by more than one process at a
time. As is the case with most other OS-9 programs, it uses standard I/O paths for routine input and
output. specifically, it requests command lines from the standard input path and writes its prompts and
other data to the standard error path.

The shell can start up another process also running the shell by means of the shell command. If the
standard input path is redirected to a mass storage file, the new “incarnation” of the shell can accept
and execute command lines from the file instead of a terminal keyboard. The text file to be processed
is called a “procedure file”. It contains one or more command lines that are identical to command
lines that are manually entered from the keyboard. This technique is sometimes called “batch” or
“background” processing.

If the program name specified on a shell command line can not be found in memory or in the
execution directory, shell will search the data directory for a file with the desired name. If one is found,
shell will automatically execute it as a procedure file.

Execution of procedure files have a number of valuable applications. It can eliminate repetitive manual
entry of commonly-used sequences of commands. It can allow the computer to execute a lengthy series
of programs “in the background” while the computer is unattended or while the user is running other
programs “in the foreground”.

In addition to redirecting the shell's standard input to a procedure file, the standard output and standard
error output can be redirected to another file which can record output for later review or printing. This
can also eliminate the sometimes-annoying output of shell messages to your terminal at random times.

Here are two simple ways to use the shell to create another shell:

OS9: shell <procfile

OS9: procfile

Both do exactly the same thing: execute the commands of the file procfile. To run the procedure
file in a “background” mode you simply add the ampersand operator:

OS9: procfile&

OS-9 does not have any constraints on the number of jobs that can be simultaneously executed as long
as there is memory available. Also, the procedure files can themselves cause sequential or concurrent
execution of additional procedure files. Here's a more complex example of initiating two processing
streams with redirection of each shell's output to files:

OS9: proc1 T >>stat1& proc2 T >>stat2&

Note that the built-in command “T” (copy input lines to error output) was used above. They make the
output file contain a record of all lines executed, but without useless “OS9” prompts intermixed. The
“-x” built-in command can be used if you do not want processing to stop if an error occurs. Note that
the built-in commands only affect the shell that executes them, and not any others that may exist.

4.7. Error Reporting
Many programs (including the shell) use OS-9's standard error reporting function, which displays an
error number on the error output path. The standard error codes are listed in the Appendix A, OS-9
Error Codes of this manual. If desired, the printerr command can be executed, which replaces the
smaller, built-in error display routine with a larger (and slower) routine that looks up descriptive error
messages from a text file called /d0/sys/errmsg. Once the printerr command has been run it
cannot be turned off. Also, its effect is system-wide.

Running Compiled
Intermediate Code Programs

31

Programs called by the shell can return an error code in the CPU's “B” register (otherwise B should be
cleared) upon termination. This type of error, as well as errors detected by the shell itself, will cause an
error message to be displayed and processing of the command line or procedure file to be terminated
unless the “-x” built-in command has been previously executed.

4.8. Running Compiled Intermediate Code Programs
Before the shell executes a program, it checks the program module's language type. If its type is not
6809 machine language, shell will call the appropriate run-time system for that module. Versions of
the shell supplied for various systems are capable of calling different run-time systems. Most versions
of shell call Basic09 when appropriate, and Level Two versions of shell can also call the Pascal P-
code interpreter (PascalN), or the CIS Cobol runtime system (RunC).

For example, if you wanted to run a Basic09 I-code module called adventure, you could type the
command given below:

OS9: basic09 adventure

Or you could accomplish the same thing by typing the following:

OS9: adventure

4.9. Setting Up Timesharing System Procedure Files
OS-9 systems used for timesharing usually have a procedure file that brings the system up by means
of one simple command or by using the system startup file. A procedure file which initiates the
timesharing monitor for each terminal is executed to start up the system. The procedure file first starts
the system clock, then initiates concurrent execution of a number of processes that have their I/O
redirected to each timesharing terminal.

Usually one tsmon command program is started up concurrently for each terminal in the system. This
is a special program which monitors a terminal for activity. When a carriage return character is typed
on any of these terminals, the tsmon command initiates the login command program. If a user does
not enter a correct password or user number in three tries, the login command will be aborted. Here's
a sample procedure file for a 4-terminal timesharing system having terminals names “TERM”, “T1”,
“T2”, and “T3”.

* system startup procedure file
echo Please Enter the Date and Time
setime </term
printerr
tsmon /t1&
tsmon /t2&
tsmon /t3&

NOTE: This login procedure will not work until a password file called /D0/SYS/PASSWORD has
been created. For more information, please see the login command description.

The example above deserves special attention. Note that the setime command has its input redirected
to the system console “term”, which is necessary because it would otherwise attempt to read the time
information from its current standard input path, which is the procedure file and not the keyboard.

32

33

Chapter 5. Multiprogramming and
Memory Management

One of OS-9's most extraordinary abilities is multiprogramming, which is sometimes called
timesharing or multitasking. Simply states, OS-9 lets you computer run more than one program at the
same time. This can be a tremendous advantage in many situations. For example, you can be editing
one program while another is being printed. Or you can use your Color Computer to control household
automation and still be able to use it for routine work and entertainment.

OS-9 uses this capability all the time for internal functions. The simple way for you to do so is by
putting a “&” character at the end of a command line which causes the shell to run your command
as a “background task”.

The information presented in this chapter is intended to give you an insight into how OS-9 performs
this amazing feat. You certainly don't have to know every detail of how multiprogramming works
in order to use OS-9, but a basic working knowledge can help you discover many new ways to use
your Color Computer.

In order to allow several programs to run simultaneously and without interference, OS-9 must perform
many coordination and resource allocation functions. The major system resources managed by OS-9
are:

CPU Time
Memory
The input/output system

In order for the computer to have reasonable performance, these resources must be managed in the most
efficient manner possible. Therefore, OS-9 uses many techniques and strategies to optimize system
throughput and capacity.

5.1. Processor Time Allocation and Timeslicing
CPU time is a resource that must be allocated wisely to maximize the computer's throughput. It is
characteristic of many programs to spend much unproductive time waiting for various events, such
as an input/output operation. A good example is an interactive program which communicates with a
person at a terminal on a line-by line basis. Every time the program has to wait for a line of characters
to be typed or displayed, it (typically) cannot do any useful processing and would waste CPU time. An
efficient multiprogramming operating system such as OS-9 automatically assigns CPU time to only
those programs that can effectively use the, time.

OS-9 uses a technique called timeslicing which allows processes to share CPU time with all other
active processes. Timeslicing is implemented using both hardware and software functions. The
system's CPU is interrupted by a real time clock many (60 in the Color Computer) times each second.
This basic time interval is called a “tick”, hence, the interval between ticks is a time slice. This
technique is called timeslicing because each second of CPU time is sliced up to be shared among
several processes. This happens so rapidly that to a human observer all processes appear to execute
continuously, unless the computer becomes overloaded with processing. If this happens, a noticeable
delay in response to terminal input may occur, or “batch” programs may take much longer to run than
they ordinarily do. At any occurrence of a tick, OS-9 can suspend execution of one program and begin
execution of another. The starting and stopping of programs is done in a manner that does not affect the
program's execution. How frequently a process is given time slices depends upon its assigned priority
relative to the assigned priority of other active processes.

The percentage of CPU time assigned to any particular process cannot be exactly computed because
there are dynamic variables such as time the process spends waiting for I/O devices. It can be roughly
approximated by dividing the process's priority by the sum of the priority numbers of all processes:

Process States

34

 Process Priority
Process CPU Share = -------------------
 Sum of All Active
 Process' Priorities

5.2. Process States
The CPU time allocation system automatically assigns programs one of three “states” that describe
their current status. Process states are also important for coordinating process execution. A process
may be in one and only one state at any instant, although state changes may be frequent. The states are:

ACTIVE: processes which can currently perform useful processing. These are the only processes
assigned CPU time.

WAITING: processes which have been suspended until another process terminates. This state is used
to coordinate execution of sequential programs. The shell, for example, will be in the waiting state
during the time a command program it has initiated is running.

SLEEPING: processes suspended by self-request for a specified time interval or until receipt of a
“signal”. Signals are internal messages used to coordinate concurrent processes. This is the typical
state of programs which are waiting for input/output operations.

Sleeping and waiting processes are not given CPU time until they change to the active state.

5.3. Creation of New Processes
The sequence of operations required to create a new process and initially allocate its resources
(especially memory) are automatically performed by OS-9's “fork” function. If for any reason any
part of the sequence cannot be performed the fork is aborted and the prospective parent is passed
an appropriate error code. The most frequent reason for failure is unavailablity of required resources
(especially memory) or when the program specified to be run cannot be found. A process can create
many new processes, subject only to the limitation of the amount of unassigned memory available.

When a process creates a new process, the creator is called the “parent process”, and the newly created
process is called the “child process”. The new child can itself become a parent by creating yet another
process. If a parent process creates more than one child process, the children are called “siblings”
with respect to each other. If the parent/child relationship of all processes in the system is examined, a
hierarchical lineage becomes evident. In fact, this hierarchy is a tree structure that resembles a family
tree. The “family” concept makes it easy to describe relationships between processes, and so it is used
extensively in descriptions of OS-9's multiprogramming operations.

When the parent issues a fork request to OS-9, it must specify the following required information:

• A PRIMARY MODULE, which is the name of the program to be executed by the new process. The
program can already be present in memory, or OS-9 may load it from a mass storage file having
the same name.

• PARAMETERS, which is data specified by the parent to be passed to and used by the new process.
This data is copied to part of the child process' memory area. Parameters are frequently used to pass
file names, initialization values, etc. The shell, passes command line parameters this way.

The new process also “inherits” copies of certain of its parent's properties. These are:

• A USER NUMBER which is used by the file security system and is used to identify all processes
belonging to a specific user (this is not the same as the “process ID”, which identifies a specific
process) . This number is usually obtained from the system password file when a user logs on. The
system manager always is user number zero.

Basic Memory
Management Functions

35

• STANDARD INPUT AND OUTPUT PATHS: the three paths (input, output, and error/status) used
for routine input and output. Note that most paths (files) may be shared simultaneously by two or
more processes. The two current working directories are also inherited.

• PROCESS PRIORITY which determines what proportion of CPU time the process receives with
respect to others.

As part of the fork operation, OS-9 automatically assigns:

• A PROCESS ID: a number from 1 to 255, which is used to identify specific processes. Each process
has a unique process ID number.

• MEMORY: enough memory required for the new process to run. Level Two systems give each
process a unique “address space”. In Level One systems, all processes share the single address
space. A “data area”, used for the program's parameters, variables, and stack is allocated for the
process' exclusive use. A second memory area may also be required to load the program (primary
module) if it is not resident in memory.

To summarize, the following items are given to or associated with new processes:

• Primary Module (program module to be run)
• Parameter(s) passed from parent to child
• User Number
• Standard I/O paths and working directories
• Process Priority
• Process ID
• Memory

5.4. Basic Memory Management Functions
An important OS-9 function is memory management. OS-9 automatically allocates all system memory
to itself and to processes, and also keeps track of the logical contents of memory (meaning which
program modules are resident in memory at any given time). The result is that you seldom have to be
bothered with the actual memory addresses of programs or data.

Within the address space, memory is assigned from higher addresses downward for program modules,
and from lower addresses upward for data areas, as shown below:

 +---------------------------+ highest address
 ! program modules !
 ! (RAM or ROM) !
 ! !
 ! - - - - - - - - - - - - - !
 ! !
 ! unused space !
 ! (RAM or empty) !
 ! !
 ! - - - - - - - - - - - - - !
 ! !
 ! data areas !
 ! (RAM) !
 ! !
 +---------------------------+ lowest address (0)

5.4.1. Loading Program Modules Into Memory

When performing a fork operation, OS-9's first step is to attempt to locate the requested program
module by searching the “module directory”, which has the address of every module present in

Loading Program
Modules Into Memory

36

memory. The 6809 instruction set supports a type of program called “reentrant code” which means
the exact same “copy” of a program can be shared by two or more different processes simultaneously
without affecting each other, provided that each “incarnation” of the program has an independent
memory area for its variables.

Almost all OS-9 family software is reentrant and can make most efficient use of memory. For example,
Basic09 requires 22K bytes of memory to load into. If a request to run Basic09 is made, but another
user (process) had previously caused it to be loaded into memory, both processes will share the same
copy, instead of causing another copy to be loaded (which would use an additional 22K of memory).
OS-9 automatically keeps track of how many processes are using each program module and deletes
the module (freeing its memory for other uses) when all processes using the module have terminated.

If the requested program module is not already in memory, the name is used as a pathlist (file name) and
an attempt is made to load the program from mass storage (see Section 3.10.4, “Executable Program
Module Files”).

Every program module has a “module header” that describes the program and its memory
requirements. OS-9 uses this to determine how much memory for variable storage should be allocated
to the process (it can be given more memory by specifying an optional parameter on the shell command
line). The module header also includes other important descriptive information about the program, and
is an essential part of OS-9 operation at the machine language level. A detailed description of memory
modules and module headers can be found in the OS-9 System Programmer's Manual.

Programs can also be explicitly loaded into memory using the load command. As with fork, the
program will actually be loaded only if it is not already in memory. If the module is not in memory,
OS-9 will copy a candidate memory module from the file into memory, verify the CRC, and then,
if the module is not already in the module directory, add the module to the directory. This process
is repeated until all the modules in the file are loaded, the 64K memory limit is exceeded, or until a
module with an invalid format is encountered. OS-9 always links to the first module read from the file.

Level One systems load modules on 256-bytes page boundaries. Level Two system load modules
contiguously on memory block boundaries. The block size is usually 2K per block for systems
equipped with MC6829 MMUs, or 4K bytes for most SS-50 bus systems. Free memory to be used for
user data area need not be contiguous because the MMU can map scattered free blocks th be logically
contiguous. Since OS-9 will request the largest physically contiguous memory block available (up to
56K) to load program modules, load operations can fail even if sufficient total free memory exists.
Any of this memory not used by the load operation is returned to the system.

If the program module is already in memory, the load will proceed as described above, loading the
module from the specified file, verifying the CRC, and when attempting to add the valid module to the
module directory, noticing that the module is already known, the load merely increments the known
module's link count (the number of processes using the module.) The load command can be used to
“lock” a program into memory. This can be useful if the same program is to be used frequently because
the program will be kept in memory continuously, instead of being loaded repeatedly.

The opposite of load is the unlink command, which decreases a program module's link count by one.
Recall that when this count becomes zero (indicating the module in no longer used by any process), the
module is deleted, e.g., its memory is deallocated and its name is removed from the module directory.
The unlink command is generally used in conjunction with the load command (programs loaded by
fork are automatically unlinked when the program terminates).

On Level Two systems, multiple modules loaded from a single file are logically associated by the
memory management logic. All modules in the group will occupy contiguous physical memory blocks.
The group's memory can only be deallocated when all the modules which are members of the group
have zero link counts. Similarly, linking to one module within a group causes all other modules in
the group to be mapped into the process's address space. (see Section 3.10.4, “Executable Program
Module Files”).

Here is an example of the use of load and unlink to lock a program in memory. Suppose the copy
command will be used five times. Normally, the copy command would be loaded each time the copy

Loading Multiple Programs

37

command is called. If the load command is used first, copy will be locked into memory first, for
example:

OS9: load copy
OS9: copy file1 file1a
OS9: copy file2 file2a
OS9: copy file3 file3a
OS9: unlink copy

It is important to use the unlink command after the program is no longer needed, or the program will
continue to occupy memory which otherwise could be used for other purposes. Be very careful not to
completely unlink modules in use by any process! This will cause the memory used by the module to
be deallocated and its contents destroyed. This will certainly cause all programs using the unlinked
module to crash.

5.4.2. Loading Multiple Programs

Another important aspect of program loading is the ability to have two or more programs resident
in memory at the same time. This is possible because all OS-9 program modules are “position-
independent code”, or “PIC”. PIC programs do not have to be loaded into specific, predetermined
memory addresses to work correctly, and can therefore be loaded at different memory addresses
at different times. PIC programs require special types of machine language instructions which few
computers have. The ability of the 6809 microprocessor to use this type of program is one of its most
powerful features.

The load command can therefore be used two or more times (or a single file may contain
several memory modules), and each program module will be automatically loaded at different, non-
overlapping addresses (most other operating systems write over the previous program's memory
whenever a new program is loaded). This technique also relieves the user from having to be directly
concerned with absolute memory addresses. Any number of program modules can be loaded until
available system memory is full.

5.4.3. Memory Fragmentation

Even though PIC programs can be initially loaded at any address where free memory is available,
program modules cannot be relocated dynamically afterwards, e.g., once a program is loaded it must
remain at the address at which it was originally loaded (however Level Two systems can “load” (map)
memory resident programs at different addresses in each process' address space). This characteristic
can lead to a sometimes troublesome phenomenon called “memory fragmentation”. When programs
are loaded, they are assigned the first sufficiently large block of memory at the highest address possible
in the address space. If a number of program modules are loaded, and subsequently one or more
modules which are located in between other modules are “unlinked”, several fragments of free memory
space will exist. The sum of the sizes of the free memory space may be quite large, but because they
are scattered, not enough space will exist in a single block to load a program module larger than the
largest free space.

The mfree command shows the location and size of each unused memory area and the mdir e
command shows the address, size, and link (use) count of each module in the address space. These
commands can be used to detect fragmentation. Memory can usually be de-fragmented by unlinking
scattered modules and reloading them. Make certain none are in use before doing so.

38

39

Chapter 6. Use of the System Disk
Disk-based OS-9 systems use a system disk to load many parts of the operating system during the
system startup and to provide files frequently used during normal system operations. Therefore, the
system disk is generally kept in disk drive zero (“/D0”) when the system is running.

Two files used during the system startup operation, OS9Boot and startup must reside in the
system disk's root directory. Other files are organized into three directories: CMDS (commands), DEFS
(system-wide definitions), and SYS (other system files). Other files and directories created by the
system manager and/or users may also reside on the system disk. These frequently include each user's
initial data directory.

6.1. The OS9Boot File
The file called OS9Boot loaded into RAM memory by the “bootstrap” routine located in the OS-9
firmware. It includes file managers, device drivers and descriptors, and any other modules which are
permanently resident in memory. A typical Microware OS-9 distribution disk's OS9Boot file contains
the following modules:

All editions

OS9P2 OS-9 Kernel, Part 2

IOMan OS-9 Input/Output Manager

Init Initialization Data Module

RBF Random Block (disk) File Manager

SCF Sequential Character (terminal) File Manager

PipeMan Pipeline File Manager

Piper Pipeline Driver

Pipe Pipeline Device Descriptor

Term Terminal Device Descriptor

DD, D0, D1 Disk Device Descriptors

Printer Printer Device Driver

P Printer Device Descriptor

Clock Real-Time Clock Module

Dragon 64

KBVDIO Keyboard/Video/Graphics Device Driver

DDisk Disk Driver

SYSGO System Startup Process

TRS-80 Color Computer 3

CC3IO CoCo 3 Keyboard/Video Device Driver

WindInt CoCo 3 Graphics Co-Module

VDGInt CoCo 2 Compatible Graphics Co-Module

CC3Disk CoCo 3 Disk Driver

CC3Go System Startup Process

Users may create new bootstrap files which may include additional modules (see OS9Gen command).
Any module loaded as part of the bootstrap cannot be unlinked and is stored in memory with
a minimum of fragmentation. In Level One, it is advantageous to include in the OS9Boot file
any module used constantly during normal system operation. This can be done with the OS9GEN
command. In Level Two, however, since files placed in the OS9boot file will be loaded into the same

The SYS Directory

40

memory block, when the system switches the boot block into its own address space, the non-system
files decrease the amount of memory addressable in system mode. Alternatively, optional modules
should be placed in a separate file that is load as part of the system startup procedure.

6.2. The SYS Directory
The directory /d0/SYS contains two important files:

password the system password file (see login command)

motd message of the day file, displayed during login

errmsg the error message file

These files (and the SYS directory itself) are not absolutely required to boot OS-9, they are needed
if login, tsmon, or printerr will be used. Users may add other system-wide files of similar nature
if desired.

6.3. The Startup File
The file /d0/startup is a shell procedure file which is automatically processed immediately after
system startup. The user may include in startup any legal shell command line. Often this will
include setime to start the system clock. If this file is not present the system will still start correctly
but the user must run the SETIME command manually.

6.4. The CMDS Directory
The directory /d0/CMDS is the system-wide command object code directory, which is normally
shared by all users as their working execution directory. If shell is not part of the OS9Boot file, it
must be present in this directory. The system startup process “sysgo” makes CMDS the initial execution
directory.

6.5. The DEFS Directory
The directory /d0/DEFS is a directory that contains assembly language source code files which
contain common system-wide symbolic definitions, and are normally included in assembly language
programs by means of the OS-9 Assembler “use” directive. The presence and use of this directory
is optional, but highly recommended for any system used for assembly language programs. The files
commonly contained in this directory are:

OS9Defs main system-wide definition file

RBFDefs RBF file manager definition file

SCFDefs SCF file manager definition file

Systype System types definition file

6.6. Changing System Disks
The system disk is not usually removed while the system is running, especially on multiuser systems.
If it is, the chx and chd (if the working data directory was on the system disk) commands should be
executed to reset the working directory pointers because the directories may be at different addresses
on the new disk, for example:

chx /d0/cmds
chd /d0

Making New System Disks

41

In general, it is unwise to remove a disk and replace it with another if any paths are open to files
resident on the disk. It is dangerous to exchange any disk if any files on it are open in WRITE or
UPDATE modes.

6.7. Making New System Disks
To make a system disk, the following steps must be performed:

1. The new disk must be formatted.

2. The OS9Boot file must be created and linked by the OS9Gen or Cobbler commands.

3. The startup file must be created or copied.

4. The CMDS and SYS directories and the files they contain must be copied.

Steps 2 through 4 may be performed manually, or automatically by any of the following methods:

1. By a shell procedure file created by the user.

2. By a shell procedure file generated by the dsave command

3. By the backup command

42

43

Chapter 7. System Command
Descriptions

This section contains descriptions for each of the command programs that are supplied with OS-9.
These programs are usually called using the shell, but can be called from most other OS-9 family
programs such as BASIC09, Interactive Debugger, Macro Text Editor, etc. Unless otherwise noted,
these programs are designed to run as individual processes.

Warning

Although many OS-9 commands may work on Level One or Level Two systems, there are
differences. Take care not to mix command files from Level One systems on Level Two, or
the reverse.

7.1. Formal Syntax Notation
Each command description includes a syntax definition which describes how the command sentence
can be constructed. These are symbolic descriptions that use the following notation:

[] = Brackets indicate that the enclosed item(s) are optional.

{ } = Braces indicate that the enclosed item(s) can be either omitted or
repeated multiple times.

path = Represents any legal pathlist.

devname = Represents any legal device name.

nodname = Represents any legal memory module name.

procID = Represents a process number.

opts = One or more options defined in the command description.

arglist = a list of arguments (parameters).

text = a character string terminated by end-of-line.

NOTE: The syntax of the commands given does not include the shell's built in options such as alternate
memory size, I/O redirection, etc. This is because the shell will filter its options out of the command
line before it is passed to the program being called.

7.2. Commands

Name
ASM — Assembler
Editor/Assembler/Debugger

Synopsis

asm filename [o= outfile] [>list]

Description

Standard OS-9 Assembler. If no “o” option is given, then the assembler only checks syntax. If the
output file provided is not a full path then it is created in the execution directory.

Examples

asm #10k helloworld.a o=helloworld

44

Name
ATTR — Change file security attributes

Synopsis

attr path [{ permission abbreviations }]

Description

This command is used to examine or change the security permissions of a file. To enter the command,
type attr followed by the pathlist for the file who's security permissions are to be changed, followed
by a list of permissions which are to be turned on or off. A permission is turned on by giving its
abbreviation, or turned off by preceding its abbreviation with a minus sign. Permissions not explicitly
named are not affected. If no permissions are given the current file attributes will be printed. You can
not change the attributes of a file which you do not own (except for user zero, who can change the
attributes of any file in the system).

The file permission abbreviations are:

 d = Directory file
 s = Sharable file
 r = Read permit to owner
 w = Write permit to owner
 e = Execute permit to owner
pr = Read permit to public
pw = Write permit to public
pe = Execute permit to public

The attr command may be used to change a directory file to a non-directory file if all entries have
been deleted from it. Since the DEL command will only delete non-directory files, this is the only
way a directory may be deleted. You cannot change a non-directory file to a directory file with this
command (see makdir).

For more information see: Section 3.9, “The File Security System”, Section 3.9.1, “Examining and
Changing File Attributes”

Examples

attr myfile -pr -pw

attr myfile r w e pr rw pe

attr datalog
-s-wr-wr

Name
BACKUP — Make a backup copy of a disk

Synopsis

backup [e] [s] [-v] [devname [devname]]

Description

This command is used to physically copy all data from one device to another. A physical copy is
performed sector by sector without regard to file structures. In almost all cases the devices specified
must have the exact same format (size, density, etc.) and must not have defective sectors.

45

If both device name are omitted the names “/d0” and “/d1” are assumed. If the second device name is
omitted, a single unit backup will be performed on the drive specified.

The options are:

 E = Exit if any read error occurs.
 S = Print single drive prompt message.
 -V = Do not verify.
#nK = more memory makes backup run faster

Examples

backup /D2 /D3

backup -V

OS9: backup

Ready to BACKUP from /D0 to /D1 ?: Y
MYDISK is being scratched
OK ?: Y
Number of sectors copied: $04D0
Verify pass
Number of sectors verified: $04D0
OS9:

Below is an example of a single drive backup. backup will read a portion of the source disk into
memory, you remove the source disk and place the destination disk into the drive, backup writes on
the destination disk, you remove the destination disk and place the source disk into the drive. This
continues until the entire disk has been copied. Giving backup as much memory as possible will cause
fewer disk exchanges to be required.

For more information see: Section 1.2.2, “Running the Backup Program”

OS9:backup /D0 #10k

Ready to BACKUP from /D0 to /D0 ?: Y
Ready DESTINATION, hit a key:
MYDISK is being scratched
OK ?: Y
Ready SOURCE, hit a key:
Ready DESTINATION, hit a key:
Ready SOURCE, hit a key:
Ready DESTINATION, hit a key:

(several repetitions)

Ready DESTINATION, hit a key:
Number of sectors copied: $4D0
Verify pass
Number of sectors verified: $4D0

Name
BASIC09 — Basic interpreter and compiler

46

Basic09 language system

Synopsis

basic09 [filename]

Description

The Auto-run feature allows BASIC09 to get the name of a file to load and run from the same command
line used to call BASIC09. The file loaded and run can be either a SAVED file (in the data directory), or
a PACKED file (in the execution directory). The file may contain several procedures; the one executed
is the one with the same name as the file. Parameters may be passed following the pathname specified.

Once one or more BASIC09 procedures are debugged to the programmer's satisfaction, they can be
“packed” or converted permanently to bytecode form. Comments and names of local variables are
discarded during packing, so that in BASIC09, comments and intelligible variable names are not
considered a burden to be avoided in the name of efficiency.

Examples

OS9: BASIC09
READY
B:bye

OS9: BASIC09 printreport("Past Due Accounts")

OS9: BASIC09 evaluate(COS(7.8814)/12.075,-22.5,129.055)

See Also

BASIC09 Programming Language Reference Manual

Name
BINEX — Convert Binary To S-Record File

Synopsis

binex path1 path2

Description

S-Record files are a type of text file that contains records that represent binary data in hexadecimal
character form. This Motorola-standard format is often directly accepted by commercial PROM
programmers, emulators, logic analyzers and similar devices that are interfaced RS-232 interfaces. It
can also be useful for transmitting files over data links that can only handle character-type data; or to
convert OS-9 assembler or compiler-generated programs to load on non-OS-9 systems.

Binex converts “path1”, an OS-9 binary format file, to a new file named “path2” in S-Record format.
If invoked on a non-binary load module file, a warning message is printed and the user is asked
if binex should proceed anyway. A “Y” response means yes; any other answer will terminate the
program. S-Records have a header record to store the program name for informational purposes and
each data record has an absolute memory address which is not meaningful to OS-9 since it uses
position-independent-code. However, the S-Record format requires them so binex will prompt the
user for a program name and starting load address. For example:

binex /d0/cmds/scanner scanner.S1
Enter starting address for file: $100

47

Enter name for header record: scanner

To download the program to a device such as a PROM programmer (for example using serial port
T1) type:

list scanner.S1 >/T1

Name
BUILD — Build a text file from standard input

Synopsis

build path

Description

This command is used to build short text files by copying the standard input path into the file specified
by path. Build creates a file according to the pathlist parameter, then displays a “?” prompt to request
an input line. Each line entered is written to the output path (file). Entering a line consisting of a
carriage return only causes build to terminate.

Example:

build small_file
build /p (copies keyboard to printer)

The standard input path may also be redirected to a file. Below is an example:

build <mytext /T2 (copies file “mytext” to terminal T2)

OS9: build newfile

? The powers of the OS-9
? operating system are truly
? fantastic.
? RETURN

OS9: list newfile

The powers of the OS-9
operating system are truly
fantastic.

Name
CC — C Compiler

Synopsis

cc [options] file... [options]

Description

The are two commands which invoke distinct versions of the compiler. cc1 is for OS-9 Level I which
uses a two pass compiler, and, cc2 is for Level II which causes a single pass version. Both versions

48

of the compiler works identically, the main difference is that cc1 has been divided into two passes to
fit the smaller memory size of OS-9 Level I systems. In the following text, “cc” refers to either cc1
or cc2 as appropiate for your system.

Options

Recognized options: (UPPER and lower case is equivalent)

-a Suppress assembly. Leave output in “.a” file.

-e=n Edition number (n) is supplied to c.prep for inclusion in module psect
and/or to c.link for inclusion as the edition number of the linked module.

-o Inhibits assembly code optimizer pass.

-p Invoke compiler function profiler.

-r Suppress link step. Leave output in “.r” file.

-m=size Size in pages (in kbytes if followed by a K) of additional memory the
linker should allocate to object module.

-l=path Library file for linker to search before the standard library.

-f=path Override other output naming. Module name (in object module) is the
last name in the pathlist. -f is not allowed with -a or -r.

-c Output comments in assembly language code.

-s Suppress generation of stack-checking code.

-dNAME Is equivalent to #define NAME 1 in the preprocessor. -dNAME=STRING
is equivalent to #define NAME STRING.

-n=name output module name. name is used to override the -f default output
name.

CC1 only:

-x Create, but do not execute c.com command file.

CC2 only:

-q Quiet mode. Suppress echo of file names.

Name
CHD/CHX — Change working data directory / Change working execution directory

Synopsis

chd pathlist

chx pathlist

Description

These are shell “built in” commands used to change OS-9's working data directory or working
execution directory. Many commands in OS-9 work with user data such as text files, programs, etc.
These commands assume that a file is located in the working data directory. Other OS-9 commands
will assume that a file is in the working execution directory.

NOTE: These commands do not appear in the CMDS directory as they are built-in to the shell.

For more information see: Section 3.8, “Using and Changing Working Directories”, Section 3.8.2,
“Changing Current Working Directories”

49

Examples

chd /d1/PROGRAMS

chx ..

chx binary_files/test_programs

chx /D0/CMDS; chd /D1

Name
CMP — File Comparison Utility

Synopsis

cmp file1 file2

Description

Opens two files and performs a comparison of the binary values of the corresponding data bytes of
the files. If any differences are encountered, the file offset (address) and the values of the bytes from
each file are displayed in hexadecimal.

The comparison ends when end-of-file is encountered on either file. A summary of the number of
bytes compared and the number of differences found is then displayed.

Examples

OS9: cmp red blue

 Differences

byte #1 #2
======== == ==
00000013 00 01
00000022 B0 B1
0000002A 9B AB
0000002B 3B 36
0000002C 6D 65

Bytes compared: 0000002D
Bytes different: 00000005

OS9: cmp red red

 Differences
 None ...

Bytes compared: 0000002D
Bytes different: 00000000

Name
COBBLER — Make a bootstrap file

Synopsis

50

cobbler device name

Description

Cobbler is used to create the OS9Boot file required on any disk from which OS-9 is to be
bootstrapped. The boot file will consist of the same modules which were loaded into memory during
the most recent boostrap. To add modules to the bootstrap file use the OS9Gen command. Cobbler
also writes the OS-9 kernel on the first fifteen sectors of track 34, and excludes these sectors from the
disk allocation map. If any files are present on these sectors cobbler will display an error message.
Level Two systems must use OS9Gen to create bootstrap files.

NOTE: The boot file must fit into one contiguous block on the mass-storage device. For this reason
cobbler is normally used on a freshly formatted disk. If cobbler is used on a disk and there is not
a contiguous block of storage large enough to hold the boot file, the old boot file may have been
destroyed and OS-9 will not be able to boot from that disk until it is reformatted.

For more information see: Section 1.2.2, “Running the Backup Program”, Section 6.1, “The OS9Boot
File”

Examples

OS9: cobbler /D1

Name
COPY — Copy data from one path to another

Synopsis

copy path path [-s]

Description

This command copies data from the first file or device specified to the second. The first file or device
must already exist, the second file is automatically created if the second path is a file on a mass storage
device. Data may be of any type and is NOT modified in any way as it is copied.

Data is transferred using large block reads and writes until end-of-file occurs on the input path.
Because block transfers are used, normal output processing of data does not occur on character-
oriented devices such as terminals, printers, etc. Therefore, the list command is preferred over copy
when a file consisting of text is to be sent to a terminal or printer.

The “-s” option causes copy to perform a single drive copy operation. The second pathlist must be a
full pathlist if “-s” appears. Copy will read a portion of the source disk into memory, you remove the
source disk and place the destination disk into the drive, enter a “C” whereupon copy writes on the
destination disk, this process continues until the entire file is copied.

Using the shell's alternate memory size modifier to give a large memory space will increase speed and
reduce the number of media exchanges required for single drive copies.

Examples

copy file1 file2 #15k (copies file1 to file2)

copy /d1/joe/news /D0/peter/messages

copy /term /p (copies console to printer)

51

copy /d0/cat /d0/animals/cat -s #32k
Ready DESTINATION, hit C to continue: c
Ready SOURCE, hit C to continue: c
Ready DESTINATION, hit C to continue:c

Name
DATE — Display system date and time

Synopsis

date [t]

Description

This command will display the current system date, and if the “t” option is given, the current system
time.

Examples

date t

date t >/p (Output is redirected to printer)

OS9: setime

 YY/MM/DD HH:MM:SS
TIME ? 81/04/15 14:19:00

OS9:date

April 15, 1981

OS9:date t

April 15, 1981 14:20:20

Name
DCHECK — Check Disk File Structure

Synopsis

dcheck [-opts] devnam

Description

It is possible for sectors on a disk to be marked as being allocated but in fact are not actually associated
with a file or the disk's free space. This can happen if a disk is removed from a drive while files are
still open, or if a directory which still contains files is deleted (see Section 3.6, “Deleting Directory
Files”). Dcheck is a diagnostic that can be used to detect this condition, as well as the general integrity
of the directory/file linkages.

Dcheck is given as a parameter the name of the disk device to be checked. After verifying and printing
some vital file structure parameters, dcheck follows pointers down the disk's file system tree to all
directories and files on the disk. As it does so, it verifies the integrity of the file descriptor sectors,
reports any discrepancies in the directory/file linkages, and builds a sector allocation map from the
segment list associated with each file. If any file descriptor sectors (FDs) describe a segment with a
cluster not within the file structure of the disk, a message is reported like:

52

*** Bad FD segment ($xxxxxx-$yyyyyy) for file: pathlist

This indicates that a segment starting at sector xxxxxx and ending at sector yyyyyy cannot really be
on this disk. Because there is a good chance the entire FD is bad if any of it's segment descriptors are
bad, the allocation map is not updated for corrupt FDs.

While building the allocation map, dcheck also makes sure that each disk cluster appears only once
and only once in the file structure. If this condition is detected, dcheck will display a message like:

Cluster $xxxxxx was previously allocated

This message indicates that cluster xxxxxx has been found at least once before in the file structure.
The message may be printed more than once if a cluster appears in a segment in more than one file.

The newly created allocation map is then compared to the allocation map stored on the disk, and any
differences are reported in messages like:

Cluster $xxxxxx in allocation map but not in file structure
Cluster $xxxxxx in file structure but not in allocation map

The first message indicates sector number xxxxxx (hexadecimal) was found not to be part of the file
system, but was marked as allocated in the disk's allocation map. In addition to the causes mentioned
in the first paragraph, some sectors may have been excluded from the allocation map by the FORMAT
program because they were defective or they may be the last few sectors of the disk, the sum of which
was too small to comprise a cluster.

The second message indicates that the cluster starting at sector xxxxxx is part of the file structure but
is not marked as allocated in the disk's allocation map. It is possible that this cluster may be allocated
to another file later, overwriting the contents of the cluster with data from the newly allocated file.
Any clusters that have been reported as “previously allocated” by dcheck as described above surely
have this problem.

Available dcheck options are:

-w=path pathlist to directory for work files

-p print pathlists for questionable clusters

-m save allocation map work files

-b suppress listing of unused clusters

-s display count of files and directories only

-o print dcheck's valid options

The “-s” option causes dcheck to display a count of files and directories only; only FDs are checked
for validity. The “-b” option suppresses listing of clusters allocated but not in file structure. The “-p”
option causes dcheck to make a second pass through the file structure printing the pathlists for any
clusters that dcheck finds as “already allocated” or “in file structure but not in allocation map”. The
“-w=” option tells dcheck where to locate it's allocation map work file(s). The pathlist specified must
be a FULL pathlist to a directory. The directory “/D0” is used is used if “-w” is not specified. It is
recommended that this pathlist NOT be located on the disk being dchecked if the disk's file structure
integrity is in doubt.

Dcheck builds its disk allocation map in a file called pathlist/DCHECKpp0, where pathlist is
as specified by the “-w=” option and pp is the process number in hexadecimal. Each bit in this bitmap
file corresponds to a cluster of sectors on the disk. If the “-p” option appears on the command line,
dcheck creates a second bitmap file (pathlist/DCHECKpp1) that has a bit set for each cluster
dcheck finds as “previously allocated” or “in file structure but not in allocation map” while building

53

the allocation map. Dcheck then makes another pass through the directory structure to determine the
pathlists for these questionable clusters. These bitmap work files may be saved by specifying the “-
m” option on the command line.

Restrictions

For best results, dcheck should have exclusive access to the disk being checked. Otherwise dcheck
may be fooled if the disk allocation map changes while it is building its bitmap file from the changing
file structure. Dcheck cannot process disks with a directory depth greater than 39 levels.

For more information see: Section 3.11, “Physical File Organization”, Section 3.6, “Deleting Directory
Files”, format, 6.1 of OS-9 Systems Programmer's Manual

Examples

OS9: dcheck /d2 (workfile is on /D0)

Volume - 'My system disk' on device /d2
$009A bytes in allocation map
1 sector per cluster
$0004D0 total sectors on media
Sector $000002 is start of root directory FD
$0010 sectors used for id, allocation map and root directory
Building allocation map work file...
Checking allocation map file...

'My system disk' file structure is intact
1 directory
2 files

OS9: dcheck -mpw=/d2 /d0
Volume - 'System disk' on device /d0
$0046 bytes in allocation map
1 sector per cluster
$00022A total sectors on media
Sector $000002 is start of root directory FD
$0010 sectors used for id, allocation map and root directory
Building allocation map work file...
Cluster $00040 was previously allocated
*** Bad FD segment ($111111-$23A6F0) for file: /d0/test/junky.file
Checking allocation map file...
Cluster $000038 in file structure but not in allocation map
Cluster $00003B in file structure but not in allocation map
Cluster $0001B9 in allocation map but not in file structure
Cluster $0001BB in allocation map but not in file structure

Pathlists for questionable clusters:
Cluster $000038 in path: /d0/OS9boot
Cluster $00003B in path: /d0/OS9boot
Cluster $000040 in path: /d0/OS9boot
Cluster $000040 in path: /d0/test/double.file

1 previously allocated clusters found
2 clusters in file structure but not in allocation map
2 clusters in allocation map but not in file structure
1 bad file descriptor sector

54

'System disk' file structure is not intact
5 directories
25 files

Name
DEBUG — Interactive Debugger
Editor/Assembler/Debugger

Synopsis

debug

Description

Interactive Debugger.

Command Summary

SPACEexpression Evaluate; display in hexadecimal and decimal form

. Display dot address and contents

.. Restore last dot address; display address and contents

.expression set dot to result of expression; display address and
contents

=expression Set memory at dot to result of expression

- Decrement dot; display address and contents

ENTER Increment dot; display address and contents

: Display all registers' contents

:register Display the specified register's contents

:register expression Set register to the result of expression

E module-name Prepare for execution

G Go to the program

G expression Goto the program at the address specified by the result
of expression

L module-name Link to the module named; display address

B Display all breakpoints

B expression Set a breakpoint at the result of the expression

K Kill all breakpoints

K expression Kill the breakpoint at address specified by
expression

M expression1
expression2

Display memory dump in tabular form

C expression1
expression2

Clear and test memory

S expression1
expression2

Search memory for pattern

$ command Call OS-9 shell with optional command

Q Quit (exit) Debug

Name
DEL — Delete a file

55

Synopsis

del [-x] path {path} [-x]

Description

This command is used to delete the file(s) specified by the pathlist(s). The user must have write
permission for the file(s). Directory files cannot be deleted unless their type is changed to non-
directory: see the attr command description.

If the -x option appears, the current execution directory is assumed.

For more information see: Section 3.6, “Deleting Directory Files”, Section 3.9.1, “Examining and
Changing File Attributes”

Examples

del test_program old_test_program

del /D1/number_five

OS9:dir /D1

 Directory of /D1 14:29:46
myfile newfile

OS9:del /D1/newfile
OS9:dir /D1

 Directory of /D1 14:30:37
myfile

OS9:del myprog -x
OS9:del -x CMDS.SUBDIR/file

Name
DELDIR — Delete All Files In a Directory System

Synopsis

deldir directory name

Description

This command is a convenient alternative to manually deleting directories and files they contain. It is
only used when all files in the directory system are to be deleted.

When deldir is run, it prints a prompt message like this:

OS9: deldir OLDFILES
Deleting directory file.
List directory, delete directory, or quit ? (l/d/q)

An “l” response will cause a dir e command to be run so you can have an opportunity to see the files
in the directory before they are deleted.

A “d” response will initiate the process of deleting files.

56

A “q” response will abort the command before action is taken.

The directory to be deleted may include directory files, which may themselves include directory files,
etc. In this case, deldir operates recursively (e.g., it calls itself) so all lower-level directories are deleted
as well. In this case the lower-level directories are processed first.

You must have correct access permission to delete all files and directories encountered. If not, deldir
will abort upon encountering the first file for which you do not have write permission.

The deldir command automatically calls the dir and attr commands, so they both must reside in the
current execution directory.

Name
DEVS — Show device table entries

Synopsis

devs

Description

Devs displays a list of the system's device table. The device table contains an entry for each active
device known to OS-9. devs does not display information for uninitialized devices. The devs display
header lists the system name, the OS-9 version number, and the maximum number of devices allowed
in the device table.

Each line in the devs display contains five fields:

Name Description

Device Name of the device descriptor

Driver Name of the device driver

File Mgr Name of the file manager

Data Ptr Address of the device driver's static storage

Links Device use count

Note

Each time a user executes a chd to an RBF device, the use count of that device is incremented
by one. Consequently, the Links field may be artificially high.

Name
DIR — Display the names of files contained in a directory

Synopsis

dir [e] [x] [path]

Description

Displays a formatted list of files names in a directory file on. the standard output path. If no parameters
are given, the current data directory is shown. If the “x” option is given, the current execution directory
is shown. If a pathlist of a directory file is given, it is shown.

If the “e” option is included, each file's entire description is displayed: size, address, owner,
permissions, date and time of last modification.

57

For more information see: Section 1.1.3, “A Quick Introduction to the Use of the Keyboard and
Disks”, Section 3.5, “Creating and Using Directories”, and Section 3.9.1, “Examining and Changing
File Attributes”

Examples

dir (display data directory)

dir x (display execution directory)

dir x e (display entire description of execution dir)

dir .. (display parent of working data directory)

dir newstuff (display newstuff directory)

dir e test_programs (display entire description of test_programs)

Name
DISASM — OS-9 Module Disassembler

Synopsis

disasm [[-m module name] | filename] [options]

Description

Disasm was written to hack apart OS-9 system modules, command modules, file managers and device
drivers/descriptors either from memory or disk. Unlike most other disassemblers, disasm is a two pass
disassembler, creating output using only referenced labels. This output can be redirected to a file and
(after modifications if desired) then re-assembled.

Disasm provides completely commented disassembly of Device Descriptors... very useful for building
a customized boot file.

Options

disasm -m module name will link to module in memory - if not found,will load module
from exec directory and then link to it... after disassembly, it
will attempt to unlink the module.

disasm pathlist/module
name

will 'read' the module from the specified path without loading.

other options: o = display line number,address,object code & source code...
useful for hard to crack modules with data embedded in the
middle.

x = look for module in execution directory.

Any combination of options is allowed (upper or lower case) but they must immediately follow the '-'
and there must be no spaces separating the options.

OS-9 Level I Users

By changing relative address $17 from $64 to $30 will cause the output source to reference /d0/defs
instead of /dd/defs.

58

Also, if you are not using a driver which supports Level II display codes, you must change relative
address $15 from 01 to 00 to avoid problems in the event of an error message being printed out.

Name
DISPLAY — Display Converted Characters

Synopsis

display hex {hex}

Description

Display reads one or more hexadecimal numbers given as parameters, converts them to ASCII
characters, and writes them to the standard output. It is commonly used to send special characters
(such as cursor and screen control codes) to terminals and other I/O devices.

Examples

display 0C 1F 02 7F

display 15 >/p (sends “form feed” to printer)

OS9: display 41 42 43 44 45 46
ABCDEF

Name
DMODE — Disk descriptor Editor

Synopsis

dmode [devicename | -filename] [options]

Description

This new version allows any combination of upper or lower case options to be specified.

Also, current parameters are displayed with a “$” preceding to remind the user that the values are
hexadecimal.

Options may be prefixed with a “$”. It is simply ignored.

Examples

Typical dmode output:

OS9: dmode /dd {enter}

 drv=$00 stp=$00 typ=$80 dns=$01 cyl=$0334 sid=$06
 vfy=$00 sct=$0021 tos=$0021 ilv=$00 sas=$20

Now, let's say we want to change the number of cylinders this descripter shows. The following
command lines would all be valid and accepted by the new dmode:

OS9: dmode /dd CYL=276
-or- dmode /dd Cyl=$276

59

-or- dmode /dd cYL=276

Lastly, you may now specify either “TOS” or “T0S” to setup the number of sectors per track in track
zero. Example:

OS9: dmode /dd tos=21
-or- dmode /dd t0s=21

Name
DSAVE — Generate procedure file to copy files

Synopsis

dsave [-opts] [devname] [path]

Description

Dsave is used to backup or copy all files in one or more directories. It is unlike most other commands
in that it does NOT directly affect the system, rather, it generates a procedure file which is executed
later to actually do the work.

When dsave is executed, it writes copy commands to standard output to copy files from the current
data directory on devname (the default is /D0) to the directory specified by path. If path does
not appear, the copy is performed to the current data directory at the time the dsave procedure file is
executed. If dsave encounters a directory file, it will automatically include makdir and chd commands
in the output before generating copy commands for files in the subdirectory. Since dsave is recursive
in operation, the procedure file will exactly replicate all levels of the file system from the current data
directory downward (such a section of the file system is called a “subtree”).

If the current working directory happens to be the root directory of the disk, dsave will create a
procedure file that will backup the entire disk file by file. This is useful when it is necessary to copy
many files from different format disks, or from floppy disk to a hard disk.

Available dsave options are:

-b make output disk a system disk by using source disk's OS9Boot file,.
if present.

-b=path make output disk a system disk using path as source for the OS9Boot
file.

-i indent for directory levels

-L do not process directories below the current level

-m do not include makdir commands in procedure file

-sinteger set copy size parameter to integer K

For more information see: Section 2.3, “Some Common Command Formats”

Examples

Example which copies all files on “d2” to “d1”:

chd /d2 (select “from” directory)
dsave /d2 >/d0/makecopy (make procedure file “makecopy”)
chd /d1 (select “to” directory)
/d0/makcopy (run procedure file)

chd /d0/MYFILES/STUFF

60

dsave -is32 /d0 /d1/BACKUP/STUFF >saver
/d0/MYFILES/STUFF/saver

Name
DUMP — Formatted File Data Dump in Hexadecimal and ASCII

Synopsis

dump [path]

Description

This command produces a formatted display of the physical data contents of the path specified which
may be a mass storage file or any other I/O device. If a pathlist is omitted, the standard input path
is used. The output is written to standard output. This command is commonly used to examine the
contents of non-text files.

The data is displayed 16 bytes per line in both hexadecimal and ASCII character format. Data bytes
that have non-displayable values are represented by periods in the character area.

The addresses displayed on the dump are relative to the beginning of the file. Because memory modules
are position-independent and stored on files exactly as they exist in memory, the addresses shown on
the dump correspond to the relative load addresses of memory-module files.

Examples

DUMP (display keyboard input in hex)
DUMP myfile >/P (dump myfile to printer)
DUMP shortfile

Sample Output

 Addr 0 1 2 3 4 5 6 7 8 9 A B C D E F 0 2 4 6 8 A C E
 ---- ---- ---- ---- ---- ---- ---- ---- ---- ----------------
 0000 87CD 0038 002A P181 2800 2E00 3103 FFE0 .M.8.*q.(...1..'
 0010 0418 0000 0100 0101 0001 1808 180D 1B04
 0020 0117 0311 0807 1500 002A 5445 S2CD 5343 *TERMSC
 0030 C641 4349 C10E 529E FACIA.R.

 ^ ^ ^

starting data bytes in hexadecimal data bytes in
address format ASCII format

Name
ECHO — Echo text to output path

Synopsis

echo text

Description

This command echoes its argument to the standard output path. It is typically used to generate messages
in shell procedure files or to send an initialization character sequence to a terminal. The text should
not include any of the punctuation characters used by the shell.

61

Examples

echo >/T2 Hello John how's it going & (echo to T2)

echo >/term ** warning ** disk about to be scratched 1

echo >/p Listing of Transaction File; list trans >/p

OS9: echo Here is an important message!
Here is an important message!

Name
EDIT — Text editor
Editor/Assembler/Debugger

Synopsis

edit { inputfile } { output }

Description

The Macro Text Editor is a powerful and easy to use text preparation system. It is commonly used
to create source programs or other kinds of text files used within the OS-9 system. The editor has
many features that make editing faster and more convenient. For example, most commands involve
only one or two keystrokes.

The editor is kept in a file called “edit”, which should be present in your system's CMDS (execution)
directory. To run the editor type:

OS9: edit RETURN

The editor should load and start. When it prints the “E:” prompt, it is ready to accept a command. To
quit, type a “Q” followed by a carriage return as follows:

E: q RETURN

Name
EX — Execute program as overlay

Synopsis

ex module name [modifiers] [parameters]

Description

This a shell built-in command that causes the process executing the shell to start execution of another
program. It permits a transition from the shell to another program without creating another process,
thus conserving system memory.

This command is often used when the shell is called from another program to execute a specific
program, after which the shell is not needed. For instance, applications which only use basic09 need
not waste memory space on shell.

The ex command should always be the last command on a shell input line because any command line
following will never be processed.

62

NOTE: Since this is a built-in shell command, it does not appear in the CMDS directory.

For more information see: Section 4.5, “Built-in Shell Commands and Options”, Section 4.6, “Shell
Procedure Files”, Section 4.9, “Setting Up Timesharing System Procedure Files”

Examples

ex BASIC09

tsmon /t1&; tsmon /t2&; ex tsmon /term

Name
EXBIN — Convert S-Record To Binary File

Synopsis

exbin path2 path1

Description

S-Record files are a type of text file that contains records that represent binary data in hexadecimal
character form. This Motorola-standard format is often directly accepted by commercial PROM
programmers, emulators, logic analyzers and similar devices that are interfaced RS-232 interfaces. It
can also be useful for transmitting files over data links that can only handle character-type data; or to
convert OS-9 assembler or compiler-generated programs to load on non-OS-9 systems.

“Path1” is assumed to be an S-Record format text file which exbin converts to pure binary form on
a new file called “path2”. The load addresses of each data record must describe continguous data
in ascending order.

Exbin does not generate or check for the proper OS-9 module headers or CRC check value required
to actually load the binary file. The ident or verify commands can be used to check the validity of
the modules if they are to be loaded or run.

Example

exbin program.S1 cmds/program

Name
EXMODE — Examine or Change Device Initialization Mode
OS-9 Level Two

Synopsis

exmode devname [arglist]

Description

exmode is an enhanced verison of the xmode utility, and is useful for changing initialization
parameters specific to CoCo 3 window descriptors and enhanced ACIA device descriptors.

Exmode is very similar to the tmode command. Tmode only operates on open paths so its effect
is temporary. Exmode actually updates the device descriptor so the change persists as long as the
computer is running, even if paths to the device are repetitively opened and closed. If exmode is used
to change parameter(s) and the cobbler program is used to make a new system disk, the changed
parameter will be permanently reflected on the new system disk.

63

Exmode requires a device name to be given. If no arguments are given, the present values for each
parameter are displayed, otherwise, the parameter(s) given in the argument list are processed. Any
number of parameters can be given, and are separated by spaces or commas.

Exmode Parameter Names

upc Upper case only. Lower case characters are automatically converted to
upper case.

-upc Upper case and lower case characters permitted (default).

bsb Erase on backspace: backspace characters echoed as a backspace-space-
backspace sequence (default).

-bsb no erase on backspace: echoes single backspace only

bsl Backspace over line: lines are “deleted” by sending backspace-space-
backspace sequences to erase the same line (for video terminals)
(default).

-bsl No backspace over line: lines are “deleted” by printing a new line
sequence (for hard-copy terminals). echo Input characters “echoed”
back to terminal (default)

-echo No echo

lf Auto line feed on: line feeds automatically echoed to terminal on input
and output carriage returns (default).

-lf Auto line feed off.

pause Screen pause on: output suspended upon full screen. See “pag”
parameter for definition of screen size. Output can be resumed by typing
any key.

-pause Screen pause mode off.

null=n Set null count: number of null ($00) characters transmitted after carriage
returns for return delay. The number is decimal, default = 0.

pag=n Set video display page length to n (decimal) lines. Used for “pause”
mode, see above.

bsp=h Set input backspace character. Numeric value of character in
hexadecimal. Default = 08.

bse=h Set output backspace character. Numeric value of character in
hexadecimal. Default = 08.

del=h Set input delete line character. Numeric value of character in
hexadecimal. Default = 18.

bell=h Set bell (alert) output character. Numeric value of character in
hexadecimal. Default = 07

eor=h Set end-of-record (carriage return) input character. Numeric value of
character in hexadecimal. Default = 0D

eof=h Set end-of-file input character. Numeric value of character in
hexadecimal. Default 1B.

type=h ACIA initialization value: sets parity, word size, etc. Value in
hexadecimal. Default 15

reprint=h Reprint line character. Numeric value of character in hexadecimal.

dup=h Duplicate last input line character. Numeric value of character in
hexadecimal.

psc=h Pause character. Numeric value of character in hexadecimal.

abort=h Abort character (normally Control+C). Numeric value of character in
hexadecimal.

64

quit=h Quit character (normally Control+E). Numeric value of character in
hexadecimal.

baud=d Set baud rate for software-controllable interface. Numeric code for baud
rate: 0=110 1=300 2=600 3=1200 4=2400 5=4800 6=9600 7=19200

Examples

exmode /TERM -upc lf null=4 bse=1F pause

exmode /T1 pag=24 pause bsl -echo bsp=8 bsl=C

exmode /P baud=3 -if

Name
FORMAT — Initialize disk media

Synopsis

format devname

Description

This command is used to physically initialize, verify, and establish an initial file structure on a disk.
All disks must be formatted before they can be used on an OS-9 system.

NOTE: If the diskette is to be used as a system disk, OS9gen or cobbler must be run to create the
bootstrap after the disk has been formatted.

The following options are used:

R = inhibit ready prompt
:number: = number of sector interleave value (decimal)
"name" = disk name (32 character maximum)

The formatting process works as follows:

1. The disk surface is physically initialized and sectored.

2. Each sector is read back and verified. If the sector fails to verify after several attempts, the offending
sector is excluded from the initial free space on the disk. As the verification is performed, track
numbers are displayed on the standard output device.

3. The disk allocation map, root directory, and identification sector are written to the first few sectors
of track zero. These sectors cannot be defective.

If not provided as an option, format will prompt for a disk volume name, which can be up to 32
characters long and may include spaces or punctuation. This name can later be displayed using the
free command.

For more information see: Section 3.11, “Physical File Organization”

Name
FREE — Display free space remaining on mass-storage device

Synopsis

free devname

65

Description

This command displays the number of unused 256-byte sectors on a device which are available for new
files or for expanding existing files. The device name given must be that of a mass-storage multifile
device. Free also displays the disk's name, creation date, and cluster size.

Data sectors are allocated in groups called “clusters”. The number of sectors per cluster depends on
the storage capacity and physical characteristics of the specific device. This means that small amounts
of free space may not be divisible into as many files. For example, if a given disk system uses 8 sectors
per cluster, and a free command shows 32 sectors free, a maximum of four new files could be created
even if each has only one cluster.

For more information see: Section 3.11, “Physical File Organization”

Examples

OS9: free
BACKUP DATA DISK created on: 80/06/12
Capacity: 1,232 sectors (1-sector clusters)
1,020 free sectors, largest block 935 sectors

OS9: free /D1
OS-9 Documentation Disk created on: 81/04/13
Capacity: 1,232 sectors (1-sector clusters)
568 Free sectors, largest block 440 sectors

Name
GO51 — The 51 Column by 24 Line Video Display

Synopsis

go51

Description

An alternative video screen device driver, which provides a 51 column by 24 line display with upper
and lower case character sets, can be incorporated into OS-9 with the command:

GO51

This command replaces the normal text screen driver with one that uses high resolution graphics to
“draw” the characters. As there are fewer pixels (dots) per character in this mode more characters can
be displayed on the screen, albeit with some loss of character definition.

Note, however, that the use of a high resolution graphics page means that an extra 6K bytes will be
needed in this mode. This extra memory requirement is not normally a problem but in memory-critical
applications, such as the C and Pascal compilers, the user can simply avoid the use of go51.

This mode of display has a set of escape sequences (commands) to emulate commercial data terminals.
In addition to the video screen driver, go51 provides a new keyboard driver which features auto-
repeat. The keyboard code allocation is the same as described in section Section 2.4.3, “Control Key
Functions” and Appendix C, Key Definitions With Hexadecimal Values

The GO51 Display Functions

Like the normal 32 by 16 video display functions described in Appendix B, VDG Display System
Functions the 51 by 24 mode provides many built in facilities to control the display. These functions
are activated by the use of the various escape sequences and control characters described below:

66

Escape Sequence (Hex) Name/Function

1B 41 X Y CURSOR XY - move cursor to column X(0-50) and Y(0-23)
where X and Y are single byte values.

1B 42 CLEAR EOL - clear from cursor to the end of line. Cursor
position remains unchanged.

1B 43 CURSOR RIGHT - move cursor right by one character
position.

1B 44 CURSOR UP - move cursor up by one line.

1B 45 CURSOR DOWN - move cursor down one line.

1B 46 REVERSE ON - turn reverse field on.

1B 47 REVERSE OFF - turn reverse field off.

1B 48 UNDERLINE ON - turn underline on.

1B 49 UNDERLINE OFF - turn underline off.

1B 4A CLEAR EOS - clear from cursor to end of screen. Cursor
position remains unchanged.

Control Character
(Hex)

Name/Function

07 BELL - generates a short audible tone.

08 BACKSPACE (CURSOR LEFT) - moves cursor left one
character position.

0A LINE FEED - move cursor down by one line.

0B CURSOR HOME - move cursor to home position 0,0 (top left).

0C CLEAR SCREEN - clears the screen and home cursor.

Note

The GO51 device driver is only available on Dragon Computers.

Name
HELP — Displays the usage and syntax of OS-9 commands.
OS-9 Level Two

Synopsis

help {command}

Description

Provide as argument the command for which you want syntax help. Include as many command names
in one help line as you wish. The proper form and syntax appears for each valid command you include.

Notes

To use help, first copy Cmds.hp from the SYS directory of the CONFIG/BOOT Diskette to the SYS
directory of your system diskette. Next, copy help from the CMDS directory of the CONFIG/BOOT
Diskette to the CMDS directory of your system diskette as follows:

Procedure for one disk drive:

1. With OS-9 booted and the system diskette in your drive, type:

67

 LOAD COPY ENTER

2. Replace the system diskete with the CONFIG/BOOT Diskette and type:

 COPY /D0/SYS/CMDS.HP /D0/SYS/CMDS.HP -S #30K ENTER

3. Exchange the two diskettes as requested by the screen prompts until the process is complete.

4. Again, place the CONFIG/BOOT Diskette in the drive, and type:

 COPY /D0/CMDS/help /D0/CMDS/help -S #30K ENTER

5. Swap diskettes as requested until the process is complete.

Procedure for two disk drives

1. With OS-9 booted, place the CONFIG/BOOT Diskette in Drive 1. Be sure the system diskette is
in Drive 0.

2. Type:

 COPY /D1/SYS/CMDS.HP /D0/SYS/CMDS.HP ENTER

3. When the first copy is complete, type:

 COPY /D1/CMDS/help /D0/CMDS/help ENTER

Cmds.hp is a data file, not a text file, and you cannot successfully display it on your screen or edit it
with a standard text editor. It contains help for standard OS-9 commands.

Help displays the form and syntax of the specified command. If you use a non-standard command
name, a screen display tells you that help is not available for that command.

Examples:

 HELP BACKUP ENTER
 BACKUP [e][s][-v][dev][dev]
 Copies all data from one device to another

 HELP ME ENTER
 ME Help not available

 HELP ENTER
 HELP [command name][...]

Name
IDENT — Print OS-9 module identification

Synopsis

ident [-opts] path [-opts]

Description

This command is used to display header information from OS-9 memory modules. Ident displays the
module size, CRC bytes (with verification), and for program and device driver modules, the execution

68

offset and the permanent storage requirement bytes. Ident will print and interpret the type/language
and attribute/revision bytes. In addition, ident displays the byte immediately following the module
name since most Microware-supplied modules set this byte to indicate the module edition.

Ident will display all modules contained in a disk file. If the “-m” option appears, path is assumed
to be a module in memory.

If the “-v” option is specified, the module CRC is not verified.

The “-x” option implies the pathlist begins in the execution directory.

The “-s” option causes ident to display the. following module information on a single line:

• Edition byte (first byte after module name)

• Type/Language byte

• Module CRC

• A “.” if the CRC verifies correctly, “?” if incorrect. (Ident will leave this field blank if the “-v”
option appears.)

• Module name

Examples

OS9: ident -m ident
Header for: Ident Module name
Module size: $06A5 #1701 Module size
Module CRC: $1CE78A (Good) Good or Bad
Hdr parity: $8B Header parity
Exec. off: $0222 #546 Execution offset
Data size: $0CA1 #3233 Permanent storage requirement
Edition: $05 #5 First byte after module name
Ty/La At/Rv: $11 $81 Type/Language Attribute/Revision
Prog mod, 6809 obj, re-en Module type, Language, Attribute

OS9: ident /d0/os9boot -s
 1 $C0 $A366DC . OS9p2
 83 $C0 $7FC336 . Init
 1 $11 $39BA94 . SysGo
 1 $C1 $402573 . IOMan
 3 $D1 $EE937A . REF
 82 $F1 $526268 . D0
 82 $F1 $D65245 . D1
 82 $F1 $E32FFE . D2
 1 $D1 $F944D7 . SCF
 2 $E1 $F9FE37 . ACIA
 83 $F1 $765270 . TERM
 83 $F1 $B4396C . T1
 83 $F1 $63B73B . T2
 83 $F1 $0F9B78 . T3
 83 $F1 $F83EB9 . T4
 83 $F1 $D6DD9A . T5
 3 $E1 $3EE015 . PIA
 83 $F1 $12A43B . P
 2 $D1 $BBC1EE . PipeMan

69

 2 $E1 $5B2B56 . Piper
 80 $F1 $CC06AF . Pipe
 2 $C1 $248B2C . Clock
 ^ ^ ^ ^ ^
 | | | | |
 | | | | Module name
 | | | CRC check “ ” if -v, “.” if OK, “?” if bad
 | | CRC value
 | Type/Language byte
 Edition byte (first byte after name)

Name
KILL — Abort a process

Synopsis

kill procID

Description

This shell “built in” command sends an “abort” signal to the process having the process ID number
specified. The process to be aborted must have the same user ID as the user that executed the command.
The procs command can be used to obtain the process ID numbers.

NOTE: If a process is waiting for I/O, it may not die until it completes the current I/O operation,
therefore, if you kill a process and the procs command shows it still exists, it is probably waiting for
receive a line of data from a terminal before it can die. Since this is a built-in shell command, it does
not appear in the CMDS directory. For more information see: Section 4.5, “Built-in Shell Commands
and Options”, Section 5.2, “Process States”, procs

Examples

kill 5

kill 22

OS9: procs

User # Id pty state Mem Primary module
----- --- --- -------- --- --------------
 20 2 0 active 2 Shell <TERM
 20 1 0 waiting 1 Sysgo <TERM
 20 3 0 sleeping 20 Copy <TERM

OS9: kill 3
OS9: procs

User # Id pty state Mem Primary module
----- --- --- -------- --- --------------
 20 2 0 active 2 Shell <TERM
 20 1 0 waiting 1 Sysgo <TERM

OS9:

Name
LINK — Link module into memory

70

Synopsis

link memory module name

Description

This command is used to “lock” a previously loaded module into memory. The link count of the
module specified is incremented by one each time it is “linked”. The unlink command is used to
“unlock” the module when it is no longer needed.

For more information see: Section 5.4, “Basic Memory Management Functions”, Section 5.4.1,
“Loading Program Modules Into Memory”, Section 5.4.2, “Loading Multiple Programs”,
Section 5.4.3, “Memory Fragmentation”

Examples

OS9: LINK edit

OS9: LINK myprogram

Name
LIST — List the contents of a text file

Synopsis

list path { path }

Description

This command copies text lines from the path(s) given as parameters to the standard output path.
The program terminates upon reaching the end-of-file of the last input path. If more than one path is
specified, the first path will be copied to standard output, the second path will be copied next, etc.

This command is most commonly used to examine or print text files.

For more information see: Section 2.3, “Some Common Command Formats”, Section 3.10.2, “Text
Files”

Examples

list /d0/startup >/P & (output is redirected to printer)

list /D1/user5/document /d0/myfile /d0/Bob/text

list /TERM >/p (copy keyboard to printer - use
 “escape” key to terminate input)

OS9: build animals
? cat
? cow
? dog
? elephant
? bird
? fish
? ENTER

71

OS9: list animals
cat
cow
dog
elephant
bird
fish

Name
LOAD — Load module(s) from file into memory

Synopsis

load path

Description

The path specified is opened and one or more modules is read from it and loaded into memory. The
names of the modules are added to the module directory. If a module is loaded that has the same name
and type as a module already in memory, the module having the highest revision level is kept.

For more information see: Section 3.10.4, “Executable Program Module Files”, Section 5.4.1,
“Loading Program Modules Into Memory”, Section 5.4.2, “Loading Multiple Programs”

Examples

 load new_program

OS9:mdir

 Module Directory at 13:36:47
DCB4 D0 D1 D2 D3
OS9P2 INIT OS9 IOMAN REF
SCF ACIA TERM T1 T2
T3 P PIA CDS H1
Sysgo Clock Shell Tsmon Copy
Mdir

OS9:load edit
OS9:mdir

 Module Directory at 13:37:14
DCB4 D0 D1 D2 D3
OS9P2 INIT OS9 IOMAN REF
SCF ACIA TERM T1 T2
T3 P PIA CDS H1
Sysgo Clock Shell Tsmon Copy
Mdir EDIT

Name
LOGIN — Timesharing System Log-In

Synopsis

login

72

Description

Login is used in timesharing systems to provide log-in security. It is automatically called by the
timesharing monitor tsmon, or can be used after initial log-in to change a terminal's user.

Login requests a user name and password, which is checked against a validation file. If the information
is correct, the user's system priority, user ID, and working directories are set up according to
information stored in the file, and the initial program specified in the password file is executed (usually
shell). If the user cannot supply a correct user name and password after three attempts, the process
is aborted. The validation file is called PASSWORD and must be present in the directory /d0/SYS.
The file contains one or more variable-length text records, one for each user name. Each record has
the following fields, which are delimited by commas:

1. User name (up to 32 characters, may include spaces). If this field is empty, any name will match.

2. Password (up to 32 characters, may include spaces) If this field is omitted, no password is required
by the specific use.

3. User index (ID) number (from 0 to 65535, 0 is superuser). This number is used by the file security
system and as the system-wide user ID to identify all processes initiated by the user. The system
manager should assign a unique ID to each potential user. (See Section 3.9, “The File Security
System”)

4. Initial process (CPU time) priority: 1 - 255 (see Section 5.2, “Process States”)

5. Pathlist of initial execution directory (usually /d0/CMDS)

6. Pathlist of initial data directory (specific user's directory)

7. Name of initial program to execute (usually shell). NOTE: This is not a shell command line.

Here's a sample validation file:

superuser,secret,0,255,.,.,shell
steve,open sesame,3,128,.,/d1/STEVE,shell
sally,qwerty,10,100,/d0/BUSINESS,/d1/LETTERS,wordprocessor
bob,,4,128,.,/d1/BOB,Basic09

To use the login command, enter:

login

This will cause prompts for the user's name and (optionally) password to be displayed, and if answered
correctly, the user is logged into the system. Login initializes the user number, working execution
directory, working data directory, and executes the initial program specified by the password file. The
date, time and process number (which is not the same as the user ID, see Section 5.3, “Creation of
New Processes”) are also displayed.

Note: if the shell from which login was called will not be needed again, it may be discarded by using
the ex command to start the login command. For example:

ex login

Logging Off the System

To log off the system, the initial program specified in the password file must be terminated. For most
programs (including shell) this may be done by typing an end of file character (escape) as the first
character on a line.

73

Displaying a “Message-of-the-Day”

If desired, a file named motd appearing in the SYS directory will cause login to display it's contents
on the user's terminal after successful login. This file is not required for login to operate.

For more information see: tsmon, Section 4.9, “Setting Up Timesharing System Procedure Files”,
Section 3.9, “The File Security System”, Section 5.3, “Creation of New Processes”

Examples

OS9: login

OS-9 Level 1 Timesharing System Version 1.2 82/12/04 13:02:22

User name?: superuser
Password: secret

Process #07 logged 81/12/04 13:03:00

Welcome!

Name
MAKDIR — Create directory file

Synopsis

makdir path

Description

Creates a new directory file acdording to the pathlist given. The pathlist must refer to a parent directory
for which the user has write permission.

The new directory is initialized and initially does not contain files except for the . and .. pointers
to its parent directory and itself, respectively (see Section 3.8.3, “Anonymous Directory Names”). All
access permissions are enabled (except sharable).

It is customary (but not mandatory) to capitalize directory names.

For more information see: Section 3.4, “Multifile Devices And Directory Files”, Section 3.5, “Creating
and Using Directories”, Section 3.6, “Deleting Directory Files”, Section 3.8.3, “Anonymous Directory
Names”, Section 3.10.5, “Directory Files”

Examples

makdir /d1/STEVE/PROJECT

makdir DATAFILES

makdir ../SAVEFILES

Name
MDIR — Display Module Directory

Synopsis

mdir [e]

74

Description

Displays the present module names in the system module directory, i.e., all modules currently resident
in memory. For example:

OS9: mdir

 Module Directory at 14:44:35
D0 Pipe OS9 OS9P2
Init Boot DDisk D1
KBVDIO TERM IOMan RBF
SCF SysGo Clock Shell
PRINTER P PipeMan Piper
Mdir

If the “e” option is given, a full listing of the physical address, size, type, revision level, reentant
attribute, user count, and name of each module is displayed. All numbers shown are in hexadecimal.

OS9: mdir e

Module Directory at 10:55:04

ADDR SIZE TY RV AT UC NAME
---- ---- -- -- -- -- --------
C305 2F F1 1 R D0
F059 7EB C1 1 R OS9
F852 4F4 C1 1 R OS9P2
FD46 2E CO 1 R INIT
C363 798 E1 1 R 2 KBVDIO
CAFB 38 F1 1 R 2 TERM

Caution

Many of the modules listed by mdir are OS-9 system modules and not executable as
programs: always check the module type code before running a module if you are not familiar
with it!

For more information see: Section 5.4.1, “Loading Program Modules Into Memory”

Name
MERGE — Copy and Combine Files to Standard Output

Synopsis

merge path { path }

Description

This command copies multiple input files specified by the pathlists given as parameters to the standard
output path. it is commonly used to combine several files into a single output file. Data is copied in
the order the pathlists are given. Merge does no output line editing (such as automatic line feed). The
standard output is generally redirected to a file or device.

Examples

OS9: merge file1 file2 file3 file4 >combined.file

75

OS9: merge compile.list asm.list >/printer

Name
MFREE — Display Free System RAM

Synopsis

mfree

Description

Displays a list of which areas of memory are not presently in use and available for assignment. The
address and size of each free memory block are displayed.

In Level One systems, mfree shows the address and size of each contiguous area of unassigned RAM.
The size is given as the number of 256-byte pages. This information is useful to detect and correct
memory fragmentation (see Section 5.4.3, “Memory Fragmentation”).

In Level Two systems, mfree shows the block number, physical (extended) beginning and ending
addresses, and size of each contiguous area of unassigned RAM. The size is given in number of blocks
and in K bytes. The block size is usually 2K per block for systems equipped with MC6829 MMUs,
or 4K bytes for most SS-50 bus systems. Free memory to be used for user data area need not be
contiguous because the MMU can map scattered free blocks to be logically contiguous. Since OS-9
requires 56K of physically contiguous memory to load program modules, load operations can fail even
if sufficient total free memory exists.

For more information see: Section 5.4, “Basic Memory Management Functions”, Section 5.4.3,
“Memory Fragmentation”

Example (Level One MFREE)

OS9: mfree

 Address pages
--------- -----
 700- 7FF 1
 B00-AEFF 164
B100-B1FF 1

Total pages free = 166

Example (Level Two MFREE)

 Blk Begin End Blks Size
 --- ----- ----- ---- ------
 10 10000 10FFF 1 4K
 18 18000 1DFFF 6 24K
 20 20000 3FFFF 32 128K
 ==== ======
 Total: 39 156K

Name
OS9GEN — Build and Link a Bootstrap File

Synopsis

76

os9gen device name

Description

OS9Gen is used to create and link the OS9Boot file required on any disk from which OS-9 is to be
bootstrapped. OS9Gen is used to add modules to an existing boot or to create an entirely new boot file.
If an exact copy of the existing OS9Boot file is desired, the cobbler command should be used instead.

The name of the device on which the OS9Boot file is to be installed is passed to OS9Gen as
a command line parameter. OS9Gen then creates a working file called TempBoot on the device
specified. Next it reads file names (pathlists) from its standard input, one pathlist per line. Every file
named is opened and copied to TempBoot. This is repeated until end-of-file or a blank line is reached
on OS9Gen's standard input. All boot files must contain the OS-9 component modules listed in section
Section 6.1, “The OS9Boot File”.

After all input files have been copied to TempBoot, the old OS9Boot file, if present, is deleted.
TempBoot is then renamed to OS9Boot, and its starting address and size is linked in the disk's
Identification Sector (LSN 0) for use by the OS-9 bootstrap firmware.

WARNING: Any OS9Boot file must be stored in physically contiguous sectors. Therefore, OS9Gen
is normally used on a freshly formatted disk. If the OS9Boot file is fragmented, OS9Gen will print
a warning message indicated the disk cannot be used to bootstrap OS-9.

The list of file names given to OS9Gen can be entered from a keyboard, or OS9Gen's standard input
may be redirected to a text file containing a list of file names (pathlists) . If names are entered manually,
no prompts are given, and the end-of-file key (usually ESCAPE) or a blank line is entered after the
line containing the last pathlist.

For more information see: Chapter 6, Use of the System Disk, Section 6.1, “The OS9Boot File”,
Section 6.6, “Changing System Disks”

Examples

To manually install a boot file on device “d1” which is an exact copy of the OS9Boot file on device
“d0”:

OS9: os9gen /d1 (run OS9Gen)
/d0/os9boot (enter file to be installed)
[ESCAPE] (enter end-of-file)

To manually install a boot file on device “d1” which is a copy of the OS9Boot file on device “d0”
with the addition of modules stored in the files /d0/tape.driver and /d2/video.driver:

OS9: os9gen /d1 (run OS9Gen)
/d0/os9boot (enter main boot file name)
/d0/tape.driver (enter name of first file to be added)
/d2/video.driver (enter name of second file to be added)
[ESCAPE] (enter end-of-file)

As above, but automatically by redirecting OS9Gen standard input:

OS9: build /d0/bootlist (use build to create file bootlist)
? /d0/os9boot (enter first file name)
? /d0/tape.driver (enter second file name)
? /d2/video.driver (enter third file name)
? [RETURN] (terminate build)
OS9: os9gen /d1 </d0/bootlist (run OS9gen with redirected input)

77

Name
PRINTERR — Print Full Text Error Messages
OS-9 Level One

Synopsis

printerr

Description

This command replaces the basic OS-9 error printing routine (F$Perr service request) which only
prints error code numbers, with a routine the reads and displays textual error messages from the file
/d0/SYS/errmsg. Printerr's effect is system-wide.

A standard error message file is supplied with OS-9. This file can be edited or replaced by the system
manager. The file is a normal text file with variable length line. Each error message line begins with the
error number code (in ASCII characters), a delimiter, and the error message text. The error messages
need not be in any particular order. Delimiters are spaces or any character numerically lower then $20.
Any line having a delimiter as its first character is considered a continuation of the previous line(s)
which permits multi-line error messages.

Warning

Once the printerr command has been used, it can not be undone. Once installed, the printerr
module should not be unlinked. Printerr uses the current user's stack for an I/O buffer, so
users are encouraged to reserve reasonably large stacks.

For more information see: Section 4.7, “Error Reporting”, Section 6.2, “The SYS Directory”.

Examples

OS9: printerr

Name
PROCS — Display Processes

Synopsis

procs [e]

Description

Displays a list of processes running on the system. Normally only processes having the user's ID are
listed, but if the “e” option is given, processes of all users are listed. The display is a “snapshot” taken
at the instant the command is executed: processes can switch states rapidly, usually many times per
second.

PROCS shows the user and process ID numbers, priority, state (process status), memory size (in 256
byte pages), primary program module, and standard input path.

For more information see: Section 5.1, “Processor Time Allocation and Timeslicing”, Section 5.2,
“Process States”, Section 5.3, “Creation of New Processes”

Examples

Level One Example:

78

User# Id pty state Mem Primary module
---- --- --- -------- --- --------------
 0 2 0 active 2 Shell
 0 1 0 waiting 1 SysGo
 1 3 1 waiting 2 Tsmon
 1 4 1 waiting 4 Shell
 1 5 1 active 64 Basic09

Level Two Example:

 Parnt User Mem Stack
ID ID Index Pty Siz Ptr Primary Module
--- --- ----- --- --- ----- ----------------
 2 1 0 255 1 $98E2 SysGo
 3 2 0 255 2 $96E2 Shell
 4 3 0 255 96 $94E2 Basic09
 5 4 0 255 2 $92E2 Shell
 6 5 0 255 4 $03F3 Procs
 7 2 0 128 48 $A0F0 Cobol

Name
PWD/PXD — Print Working Directory / Print Execution Directory

Synopsis

pwd

pxd

Description

Pwd displays a pathlist that shows the path from the root directory to the user's current data directory.
It can be used by programs to discover the actual physical location of files, or by humans who get
lost in the file system. Pxd is identical except that is shows the pathlist of the user's current execution
directory.

Examples

OS9: chd /D1/STEVE/TEXTFILES/MANUALS
OS9: pwd
/D1/STEVE/TEXTFILES/MANUALS
OS9: chd ..
OS9: pwd
/D1/STEVE/TEXTFILES
OS9: chd ..
OS9: pwd
/D1/STEVE

OS9: pxd
/D0/CMDS

Name
RENAME — Change file name

Synopsis

79

rename path new name

Description

Gives the mass storage file specified in the pathlist a new name. The user must have write permission
for the file to change its name. It is not possible to change the names of devices, ., or ..

Examples

rename blue purple

rename /D3/user9/test temp

OS9: dir

 Directory of . 16:22:53
myfile animals

OS9:rename animals cars
OS9:dir

 Directory of . 16:23:22
myfile cars

Name
RUNB — BASIC09 run time package
Basic09 language system

Synopsis

runb i-code module

Description

BASIC09 run time package.

Once one or more BASIC09 procedures are debugged to the programmer's satisfaction, they can be
“packed” or converted permanently to the bytecode form.

Packed BASIC09 procedures are in fact OS-9 modules, and the OS-9 shell recognizes them as I-code
and passes them off to the virtual machine emulator RunB for execution. RunB avoids a great deal of
the overhead of the typical interpreted BASICs of the day — not to mention that one can do integer
calculations where appropriate rather than doing everything in floating point — so that BASIC09
programs run very quickly in comparison with interpreted BASICs.

Name
SAVE — Save memory module(s) on a file

Synopsis

save path modname {modname}

Description

Creates a new file and writes a copy of the memory module(s) specified on to the file. The module
name(s) must exist in the module directory when saved. The new file is given access permissions for
all modes except public write.

80

Note: save's default directory is the current data directory. Executable modules should generally be
saved in the default execution directory.

Examples

save wordcount wcount

save /d1/mathpack add sub mul div

Name
SETIME — Activate and set system clock

Synopsis

setime [y,m,d,h,m,s]

Description

This command sets the system date and time, then activates the real time clock. The date and time
can be entered as parameters, or if no parameters are given, setime will issue a prompt. Numbers are
one or two decimal digits using space, colon, semicolon or slash delimiters. OS-9 system time uses
the 24 hour clock, i.e., 1520 is 3:20 PM.

Important

This command must be executed before OS-9 can perform multitasking operations. If the
system does not have a real time clock this command should still be used to set the date for
the file system.

Systems With Battery Backed up Clocks

Setime should still be run to start time-slicing, but only the year need be given, the date and
time will be read from the clock.

Examples

OS9: setime 82,12,22,1545 (Set to: Dec. 12, 1981, 3:45 PM)

OS9: setime 821222 154500 (Same as above)

OS9: setime 82 (For system with battery-backup clock)

Name
SETPR — Set Process Priority

Synopsis

setpr procID number

Description

This command changes the CPU priority of a process. It may only be used with a process having
the user's ID. The process number is a decimal number in the range of 1 (lowest) to 255. The procs
command can be used to obtain process ID numbers and present priority.

NOTE: This command does not appear in the CMDS directory as it is built-in to the shell.

81

For more information see: Section 5.1, “Processor Time Allocation and Timeslicing”, procs

Examples

setpr 8 250 (change process #8 priority to 250)

OS9: procs

User # Id pty state Mem Primary module
----- --- --- -------- --- --------------
 0 3 0 waiting 2 Shell <TERM
 0 2 0 waiting 2 Shell <TERM
 0 1 0 waiting 1 Sysgo <TERM

OS9: setpr 3 128
OS9: procs

User # Id pty state Mem Primary module
----- --- --- -------- --- --------------
 0 3 128 active 2 Shell <TERM
 0 2 0 waiting 2 Shell <TERM
 0 1 0 waiting 1 Sysgo <TERM

Name
SHELL — OS-9 Command Interpreter

Synopsis

shell arglist

Description

The shell is OS-9's command interpreter program. It reads data from its standard input path (the
keyboard or a file), and interprets the data as a sequence of commands. - The basic function of the
shell is to initiate and control execution of other OS-9 programs.

The shell reads and interprets one text line at a time from the standard input path. After interpretation
of each line it reads another until an end-of-file condition occurs, at which time it terminates itself. A
special case is when the shell is called from another program, in which case it will take the parameter
area (rest of the command line) as its first line of input. If this command line consists of “built in”
commands only, more lines will be read and processed; otherwise control will return to the calling
program after the single command line is processed.

The rest of this description is a technical specification of the shell syntax. Use of the shell is described
fully in Chapters 2 and 4 of this manual.

Shell Input Line Formal Syntax

pgm line := pgm {pgm}
pgm := [params] [name [modif] [pgm params] [modif]] [sep]

Program Specifications

name := module name

82

 := pathlist
 := (pgm list)

Parameters

params:= param { delim param }
delim := space or comma characters
param := ex name [modif] chain to program specified
 := chd pathlist change working directory
 := kill procID send abort signal to process
 := setpr procID pty change process priority
 := chx pathlist change execution directory
 := w wait for any process to die
 := p turn “OS9:” prompting on
 := -p turn prompting off
 := t echo input lines to std output
 := -t don't echo input lines
 := -x dont abort on error
 := x abort on error
 := * text comment line: not processed
sep := ; sequential execution separator
 := & concurrent execution separator
 := ! pipeline separator
 := cr end-of-line (sequential execution separator)

Modifiers

modif := mod { delim mod }
mod := < pathlist redirect standard input
 := > pathlist redirect standard output
 := >> pathlist redirect standard error output
 := # integer set process memory size in pages
 := # integer K set program memory size in 1K increments

Name
SLEEP — Suspend process for period of time

Synopsis

sleep tickcount

Description

This command puts the user's process to “sleep” for a number of clock ticks. It is generally used to
generate time delays or to “break up” CPU-intensive jobs. The duration of a tick is 16.66 milliseconds.

A tick count of 1 causes the process to “give up” its current time slide. A tick count of zero causes the
process to sleep indefinitely (usually awakened by a signal)

Examples

OS9: sleep 25

Name
SMAP — Display System Memory
OS-9 Level Two

83

Synopsis

smap

Description

Displays system memory under OS-9 Level Two.

Examples

Name
TEE — Copy standard input to multiple output paths

Synopsis

tee {path}

Description

This command is a filter (see Section 4.3.3, “Pipes and Filters”) that copies all text lines from its
standard input path to the standard output path and any number of additional output paths whose
pathlists are given as parameters.

The example below uses a pipeline and tee to simultaneously send the output listing of the dir
command to the terminal, printer, and a disk file:

dir e ! tee /printer /d0/dir.listing

The following example sends the output of an assembler listing to a disk file and the printer:

asm pgm.src l ! tee pgm.list >/printer

The example below “broadcasts” a message to four terminals:

echo WARNING System down in 10 minutes ! tee /t1 /t2 /t3 /t4

Name
TMODE — Change terminal operating mode

Synopsis

tmode [.pathnum] [arglist]

Description

This command is used to display or change the operating parameters of the user's terminal.

If no arguments are given, the present values for each parameter are displayed, otherwise, the
parameter(s) given in the argument list are processed. Any number of parameters can be. given, and
are separated by spaces or commas. A period and a number can be used to optionally specify the path
number to be affected. If none is given, the standard input path is affected.

NOTE: If this command is used in a shell procedure file, the option “.pathnum” must be used to
specify one of the standard output paths (0, 1 or 2) to change the terminal's operating characteristics.
The change will remain in effect until the path is closed. To effect a permanent change to a device
characteristic, the device descriptor must be changed.

84

This command can work only if a path to the file/device has already been opened. You may alter
the device descriptor to set a device's initial operating parameter (see the OS-9 System Programmer's
Manual).

upc Upper case only. Lower case characters are automatically converted to
upper case.

-upc Upper case and lower case characters permitted (default).

bsb Erase on backspace: backspace characters echoed as a backspace-space-
backspace sequence (default).

-bsb no erase on backspace: echoes single backspace only

bsl Backspace over line: lines are “deleted” by sending backspace-space-
backspace sequences to erase the same line (for video terminals)
(default).

-bsl No backspace over line: lines are “deleted” by printing a new line
sequence (for hard-copy terminals). echo Input characters “echoed”
back to terminal (default)

-echo No echo

lf Auto line feed on: line feeds automatically echoed to terminal on input
and output carriage returns (default).

-lf Auto line feed off.

pause Screen pause on: output suspended upon full screen. See “pag”
parameter for definition of screen size. Output can be resumed by typing
any key.

-pause Screen pause mode off.

null=n Set null count: number of null ($00) characters transmitted after carriage
returns for return delay. The number is decimal, default = 0.

pag=n Set video display page length to n (decimal) lines. Used for “pause”
mode, see above.

bsp=h Set input backspace character. Numeric value of character in
hexadecimal. Default = 08.

bse=h Set output backspace character. Numeric value of character in
hexadecimal. Default = 08.

del=h Set input delete line character. Numeric value of character in
hexadecimal. Default = 18.

bell=h Set bell (alert) output character. Numeric value of character in
hexadecimal. Default = 07

eor=h Set end-of-record (carriage return) input character. Numeric value of
character in hexadecimal. Default = 0D

eof=h Set end-of-file input character. Numeric value of character in
hexadecimal. Default 1B.

type=h ACIA initialization value: sets parity, word size, etc. Value in
hexadecimal. Default 15

reprint=h Reprint line character. Numeric value of character in hexadecimal.

dup=h Duplicate last input line character. Numeric value of character in
hexadecimal.

psc=h Pause character. Numeric value of character in hexadecimal.

abort=h Abort character (normally Control+C). Numeric value of character in
hexadecimal.

quit=h Quit character (normally Control+E). Numeric value of character in
hexadecimal.

85

baud=d Set baud rate for software-controllable interface. Numeric code for baud
rate: 0=110 1=300 2=600 3=1200 4=2400 5=4800 6=9600 7=19200

Examples

tmode -upc lf null=4 bse=1F pause

tmode pag=24 pause bsl -echo bsp=8 bsl=C

NOTE: If you use tmode in a procedure file, it will be necessary to specify one of the standard output
paths (.1 or .2) since the shell's standard input path will have been redirected to the disk file (Tmode
can be used on an SCF-type devices only). Example:

tmode .1 pag=24 (set lines/page on standard output)

Name
TSMON — Timesharing monitor

Synopsis

tsmon [pathlist]

Description

This command is used to supervise idle terminals and initiate the login sequence in timesharing
applications. If a pathlist is given, standard I/O paths are opened for the device. When a carriage return
is typed, tsmon will automatically call the login command. If the login fails because the user could
not supply a valid user name or password, it will return to tsmon.

Note: The login command and its password file must be present for tsmon to work correctly (see the
login command description).

Logging Off the System

Most programs will terminate when an end of file character (escape) is entered as the first character
on a command line. This will log you off of the system and return control to tsmon.

For more information see: Section 4.9, “Setting Up Timesharing System Procedure Files”, login

Examples

OS9:tsmon /t1&
&005

Name
UNLINK — Unlink memory module

Synopsis

unlink modname {modname}

Description

Tells OS-9 that the memory module(s) named are no longer needed by the user. The module(s) may
or may not be destroyed and their memory reassigned, depending on if in use by other processes or
user, whether resident in ROM or RAM, etc.

86

It is good practice to unload modules whenever possible to make most efficient use of available
memory resources.

Warning: never unlink a module you did not load or link to.

For more information see: Section 5.4, “Basic Memory Management Functions”, Section 5.4.1,
“Loading Program Modules Into Memory”, Section 5.4.2, “Loading Multiple Programs”

Examples

unlink pgml pgm5 pgm99

OS9: mdir

 Module Directory at 11:26:22
DCB4 D0 D1 D2 D3
OS9P2 INIT OS9 IOMAN RBF
SCF ACIA TERM T1 T2
T3 P PIA Sysgo Clock
Shell Tsmon Edit

OS9: unlink edit
OS9: mdir

 Module Directory at 11:26:22
DCB4 D0 D1 D2 D3
OS9P2 INIT OS9 IOMAN RBF
SCF ACIA TERM T1 T2
T3 P PIA Sysgo Clock
Shell Tsmon

Name
VERIFY — Verify or update module header and CRC

Synopsis

verify [u]

Description

This command is used to verify that module header parity and CRC value of one or more modules
on a file (standard input) are correct. Module(s) are read from standard input, and messages will be
sent to the standard error path.

If the U (update) option is specified, the module(s) will be copied to the standard output path with
the module's header parity and CRC values replaced with the computed values. A message will be
displayed to indicate whether or not the module's values matched those computed by verify.

If the option is NOT specified, the module will not be copied to standard output. Verify will only
display a message to indicate whether or not the module's header parity and CRC matched those which
were computed.

Examples

OS9: verify <EDIT >NEWEDIT

87

Module's header parity is correct.
Calculated CRC matches module's.

OS9: verify <myprograml >myprogram2

Module's header parity is correct.
CRC does not match.

OS9: verify <myprogram2

Module's header parity is correct.
Calculated CRC matches module's.

OS9: verify u <module >temp

Name
XMODE — Examine or Change Device Initialization Mode

Synopsis

xmode devname [arglist]

Description

This command is used to display or change the initialization parameters of any SCF-type device such
as the video display, printer, RS232 port, etc. A common use is to change baud rates, control key
definitions, etc.

Xmode is very similar to the tmode command. Tmode only operates on open paths so its effect
is temporary. Xmode actually updates the device descriptor so the change persists as long as the
computer is running, even if paths to the device are repetitively opened and closed. If xmode is used
to change parameter(s) and the cobbler program is used to make a new system disk, the changed
parameter will be permanently reflected on the new system disk.

Xmode requires a device name to be given. If no arguments are given, the present values for each
parameter are displayed, otherwise, the parameter(s) given in the argument list are processed. Any
number of parameters can be given, and are separated by spaces or commas.

XMODE Parameter Names

upc Upper case only. Lower case characters are automatically converted to
upper case.

-upc Upper case and lower case characters permitted (default).

bsb Erase on backspace: backspace characters echoed as a backspace-space-
backspace sequence (default).

-bsb no erase on backspace: echoes single backspace only

bsl Backspace over line: lines are “deleted” by sending backspace-space-
backspace sequences to erase the same line (for video terminals)
(default).

-bsl No backspace over line: lines are “deleted” by printing a new line
sequence (for hard-copy terminals). echo Input characters “echoed”
back to terminal (default)

-echo No echo

lf Auto line feed on: line feeds automatically echoed to terminal on input
and output carriage returns (default).

88

-lf Auto line feed off.

pause Screen pause on: output suspended upon full screen. See “pag”
parameter for definition of screen size. Output can be resumed by typing
any key.

-pause Screen pause mode off.

null=n Set null count: number of null ($00) characters transmitted after carriage
returns for return delay. The number is decimal, default = 0.

pag=n Set video display page length to n (decimal) lines. Used for “pause”
mode, see above.

bsp=h Set input backspace character. Numeric value of character in
hexadecimal. Default = 08.

bse=h Set output backspace character. Numeric value of character in
hexadecimal. Default = 08.

del=h Set input delete line character. Numeric value of character in
hexadecimal. Default = 18.

bell=h Set bell (alert) output character. Numeric value of character in
hexadecimal. Default = 07

eor=h Set end-of-record (carriage return) input character. Numeric value of
character in hexadecimal. Default = 0D

eof=h Set end-of-file input character. Numeric value of character in
hexadecimal. Default 1B.

type=h ACIA initialization value: sets parity, word size, etc. Value in
hexadecimal. Default 15

reprint=h Reprint line character. Numeric value of character in hexadecimal.

dup=h Duplicate last input line character. Numeric value of character in
hexadecimal.

psc=h Pause character. Numeric value of character in hexadecimal.

abort=h Abort character (normally Control+C). Numeric value of character in
hexadecimal.

quit=h Quit character (normally Control+E). Numeric value of character in
hexadecimal.

baud=d Set baud rate for software-controllable Acia 6551 interface. Numeric
code for baud rate: 0=110 1=300 2=600 3=1200 4=2400 5=4800 6=9600
7=19200

Examples

xmode /TERM -upc lf null=4 bse=1F pause

xmode /T1 pag=24 pause bsl -echo bsp=8 bsl=C

xmode /P baud=3 -if

89

Appendix A. OS-9 Error Codes
The error codes are shown in both hexadecimal (first column) and decimal (second column). Error
codes other than those listed are generated by programming languages or user programs.

HEX DEC

$C8 200 PATH TABLE FULL - The file cannot be opened because the
system path table is currently full.

$C9 201 ILLEGAL PATH NUMBER - Number too large or for non-existant
path.

$CA 202 INTERRUPT POLLING TABLE FULL

$CB 203 ILLEGAL MODE - attempt to perform I/O function of which the
device or file is incapable.

$CC 204 DEVICE TABLE FULL - Can't add another device

$CD 205 ILLEGAL MODULE HEADER - module not loaded because its
sync code, header parity, or CRC is incorrect.

$CE 206 MODULE DIRECTORY FULL - Can't add another module

$CF 207 MEMORY FULL - Level One: not enough contiquous RAM free.
Level Two: process address space full

$D0 208 ILLEGAL SERVICE REQUEST - System call had an illegal code
number.

$D1 209 MODULE BUSY - non-sharable module is in use by another
process.

$D2 210 BOUNDARY ERROR - Memory allocation or deallocation request
not on a page boundary.

$D3 211 END OF FILE - End of file encountered on read.

$D4 212 RETURNING NON-ALLOCATED MEMORY - attempted to
deallocate memory not previously assigned.

$D5 213 NON-EXISTING SEGMENT - device has damaged file structure.

$D6 214 NO PERMISSION - file attributes do not permit access requested.

$D7 215 BAD PATH NAME - syntax error in pathlist (illegal character, etc.).

$D8 216 PATH NAME NOT FOUND - can't find pathlist specified.

$D9 217 SEGMENT LIST FULL - file is too fragmented to be expanded
further.

$DA 218 FILE ALREADY EXISTS - file name already appears in current
directory.

$DB 219 ILLEGAL BLOCK ADDRESS - device's file structure has been
damaged.

$DC 220 ILLEGAL BLOCK SIZE - device's file structure has been damaged.

$DD 221 MODULE NOT FOUND - request for link to module not found in
directory.

$DE 222 SECTOR OUT OF RANGE - device file structure damaged or
incorrectly formatted.

$DF 223 SUICIDE ATTEMPT - request to return memory where your stack
is located.

$E0 224 ILLEGAL PROCESS NUMBER - no such process exists.

$E2 226 NO CHILDREN - can't wait because process has no children.

$E3 227 ILLEGAL SWI CODE - must be 1 to 3.

Device Driver Errors

90

HEX DEC

$E4 228 PROCESS ABORTED - process aborted by signal code 2.

$E5 229 PROCESS TABLE FULL - can't fork now.

$E6 230 ILLEGAL PARAMETER AREA - high and low bounds passed in
fork call are incorrect.

$E7 231 KNOWN MODULE - for internal use only.

$E8 232 INCORRECT MODULE CRC - module has bad CRC value.

$E9 233 SIGNAL ERROR - receiving process has previous unprocessed
signal pending.

$EA 234 NON-EXISTENT MODULE - unable to locate module.

$EB 235 BAD NAME - illegal name syntax

$EC 236 BAD HEADER - module header parity incorrect

$ED 237 RAM FULL - no free system RAM available at this time

$EE 238 UNKNOWN PROCESS ID - incorrect process ID number

$EF 239 NO TASK NUMBER AVAILABLE - all task numbers in use

A.1. Device Driver Errors
The following error codes are generated by I/O device drivers, and are somewhat hardware dependent.
Consult manufacturer's hardware manual for more details.

$F0 240 UNIT ERROR - device unit does not exist.

$F1 241 SECTOR ERROR - sector number is out of range.

$F2 242 WRITE PROTECT - device is write protected.

$F3 243 CRC ERROR - CRC error on read or write verify.

$F4 244 READ ERROR - Data transfer error during disk read operation, or
SCF (terminal) input buffer overrun.

$F5 245 WRITE ERROR - hardware error during disk write operation.

$F6 246 NOT READY - device has “not ready” status.

$F7 247 SEEK ERROR - physical seek to non-existant sector.

$F8 248 MEDIA FULL - insufficient free space on media.

$F9 249 WRONG TYPE - attempt to read incompatible media (i.e. attempt
to read double-side disk on single-side drive)

$FA 250 DEVICE BUSY - non-sharable device is in use

$FB 251 DISK ID CHANGE - Media was changed with files open

$FC 252 RECORD IS LOCKED-OUT - Another process is accessing the
requested record.

$FD 253 NON-SHARABLE FILE BUSY - Another process is accessing the
requested file.

91

Appendix B. VDG Display System
Functions
B.1. The Video Display Generator

OS-9 allows the VDG display to be used in alphanumeric, semigraphic, and graphics modes. There
are many built-in functions to control the display, which are activated by used of various ASCII
control characters. Thus, these functions are available for use by software written in any language
using standard output statements (such as “PRINT” in BASIC). The Basic09 language has a Graphics
Interface Module that can automatically generate these codes using Basic09 RUN statements.

The display system has two display modes: Alphanumeric (“Alpha”) mode and Graphics mode. The
Alphanumeric mode also includes “semigraphic” box-graphics. The computer's display system uses
a separate - memory area for each display mode so operations on the Alpha display do not affect the
Graphics display, and visa-versa. Either display can be selected under software control.

8-bit characters sent to the display system are interpreted according to their numerical value, as shown
in the chart below.

Character Range (Hex) Mode/Used For

00 - 0E Alpha Mode - cursor and screen control

0F - 1B Graphics Mode - drawing and screen control

1C - 20 Not used

20 - 5F Alpha Mode - upper case characters

60 - 7F Alpha Mode - lower case characters

80 - FF Alpha Mode - Semigraphic patterns

The graphics and alphanumeric functions are handled by the OS-9 device driver module called “CCIO”
or “KBVDIO”.

B.2. Alpha Mode Display
This is the “standard” operational mode. It is used to display alphanumeric characters and semigraphic
box graphics, and simulates the operation of a typical computer terminal with functions for scrolling,
cursor positioning, clear screen, line delete, etc.

Each 8-bit character is assumed to be an ASCII character and is displayed if its high order bit (sign
bit) is cleared. Lower case letters are displayed in reverse video. If the high order bit of the character
is set it is assumed to be a “Semigraphic 6” graphics box. See the computer manual for an explanation
of semigraphics functions.

Table B.1. Alpha Mode Command Codes

Control
Code

Name/Function

01 HOME - return cursor to upper left hand corner of screen

02 CURSOR XY - move cursor to character X of line Y. The binary value
minus 32 of the two characters following the control character are used
as the X and Y coordinates. For example, to position the cursor at
character 5 of line 10, you must give X=37 and Y42

03 ERASE LINE - erases all characters on the cursor's line.

Graphics Mode Display

92

Control
Code

Name/Function

06 CURSOR RIGHT - move cursor right one character position

08 CURSOR LEFT - move cursor left one character position

09 CURSOR UP - move cursor up one line

10 CURSOR DOWN (linefeed) move cursor down one line

12 CLEAR SCREEN - erase entire screen and home cursor

13 RETURN - return cursor to leftmost character of line

14 DISPLAY ALPHA - switch screen from graphic mode to alpha numeric
mode

B.3. Graphics Mode Display
This mode is used to display high-resolution 2- or 4-color graphics, and it includes commands to: set
color; plot and erase individual points; draw and erase lines; position the graphics cursor; and draw
circles.

The DISPLAY GRAPHICS command must be executed before any other graphics mode command is
used. It causes the graphics screen to be displayed and sets a current display format and color. The first
time the DISPLAY GRAPHICS command is given, a 6144 byte display memory is allocated by OS-9,
so there must be at least this much continuous free memory available (the OS-9 mfree command can
be used to check free memory). This memory is retained until the END GRAPHICS command is given,
even if the program that initiated Graphics mode finishes, so it important that the END GRAPHICS
command be used to give up the display memory when Graphics mode is no longer needed.

Graphics mode supports two basic formats: Two-Color which has 256 horizontal by 192 vertical points
(G6R mode); and Four Color which has 128 horizontal by 192 vertical points (G6C mode). Two color
sets are available in either mode. Regardless of the resolution of the format selected, all Graphics mode
commands use a 256 by 192 point coordinate system. The X and Y coordinates are always positive
numbers which assume that point 0,0 is the lower lefthand corner of the screen.

An invisible Graphics Cursor is used by many command to reduce the amount of output required to
generate graphics. This cursor can be explicitly set to any point using the SET GRAPHICS CURSOR
command. Also, all other commands that include X,Y coordinates (such as SET POINT) move the
graphics cursor to the specified position.

Table B.2. Graphics Mode Selection Codes

Code Format

00 256 x 192 two-color graphics

01 128 x 192 four-color graphics

Table B.3. Color Set and Current Foreground Color Selection Codes

Two Color Format Four Color Format

Char Background Foreground Background Foreground

00 Black Black Green Green

01 Black Green Green Yellow

02 Green Blue
Color
Set 1

03 Green Red

04 Black Black Buff BuffColor
Set 2 05 Black Buff Buff Cyan

Graphics Mode Display

93

Two Color Format Four Color Format

Char Background Foreground Background Foreground

06 Buff Magenta

07 Buff Orange

08 Black Black

09 Black Dark Green

10 Black Med. Green

Color
Set 3*

11 Black Light Green

12 Black Black

13 Black Green

14 Black Red

Color
Set 4*

15 Black Buff

* Color sets 3 and 4 not available on PAL video system (European) models. These color sets work
only with NTSC (U.S., Canada, Japan) models.

Table B.4. Graphics Mode Control Commands

Control
Code

Name/Function

15 DISPLAY GRAPHICS - switches screen to graphics mode. This
command must be given before any other graphics commands are
used. The first time this command is given, a 6K byte display buffer
is assigned. If 6K of contiguous memory is not available an error is
returned. This command is followed by two characters which specify
the graphics mode and current color/color set, respectively.

16 PRESET SCREEN - presets entire screen to color code passed in next
character.

17 SET COLOR - selects foreground color (and color set) passed in next
character, but does not change graphics mode.

18 QUIT GRAPHICS - disables graphics mode and returns the 6K byte
graphics memory area to OS-9 for other use. If the screen is not in alpha
mode, then behavior is undetermined.

19 ERASE GRAPHICS - erases all points to background color and homes
graphics cursor to the desired position.

20 HOME GRAPHICS CURSOR - moves graphics cursor to coordinates
0,0 (lower left hand corner).

21 SET GRAPHICS CURSOR - moves graphics cursor to given
coordinates X,Y. The binary value of the two characters that
immediately follow are used as the X and Y values, respectively.

22 DRAW LINE - draws a line of the current foreground color from the
current graphics cursor position to the given X,Y coordinates. The
binary value of the two characters that immediately follow are used as
the X and Y values, respectively. The graphics cursor is moved to the
end point of the line.

23 ERASE LINE - same as DRAW LINE except the line is “drawn” in the
current background color, thus erasing the line.

24 SET POINT - sets the pixel-at point X,Y to the current foreground color.
The binary value of the two characters that immediately follow are used
as the x and Y values, respectively. The graphics cursor is moved to the
point set.

Get Status Commands

94

Control
Code

Name/Function

25 ERASE POINT - same as DRAW POINT except the point is “drawn”
in the current background color, thus erasing the point.

26 DRAW CIRCLE - draws a circle of the current foreground color with
its center at the current graphics cursor position using a radius R which
is obtained using the binary value of the next character. The graphics
cursor position is not affected by this command.

B.4. Get Status Commands
The computer's I/O driver includes OS-9 Get Status commands that return the display status and
joystick values, respectively. These are accessable via the Basic09 Graphics Interface Module, or by
the assembly language system calls listed below:

GET DISPLAY STATUS:

Calling Format lda #1 (path number)
ldb #SS.DStat (Getstat code $12)
os9 I$GSTT call OS-9

Passed nothing

Returns X = address of graphics display memory
Y = graphics cursor address x=MSB y =LSB
A = color code of pixel at cursor address

GET JOYSTICK VALUES:

Calling Format lda #1 (path number)
ldb #SS.Joy (Getstat code $13)
os9 I$GSTT call OS-9

Passed X = 0 for right joystick; 1 for left joystick

Returns X = selected joystick x value (0-63)
Y = selected joystick y value (0-63)
A = $FF if fire button on; $00 if off

RETURN ALFA DISPLAY STATUS:

Calling Format lda #1 (path number)
ldb #SS.AlfaS (Getstat code $1C)
os9 I$GSTT call OS-9

Passed nothing

Returns X = Base address of alpha mode screen buffer.
Y = Cursor position in bytes from base address.
A = FF if shift lock is engaged, 0 otherwise

Table B.5. Display Control Codes Condensed Summary

1st Byte 2nd Byte 3rd Byte Function

00 Null

01 Home Alpha Cursor

02 Column+32 Row+32 Position Alpha Cursor

03 Erase Line

Get Status Commands

95

1st Byte 2nd Byte 3rd Byte Function

06 Cursor Right

08 Cursor Left

09 Cursor Up

10 Cursor Down

12 Clear Screen

13 Carriage Return

14 Select Alpha Mode

15 Mode Color Code Select Graphics Mode

16 Color Code Preset Screen

17 Color Code Select Color

18 Quit Graphics
Mode

19 Erase Screen

20 Home
Graphics
Cursor

21 X Coord Y Coord Move Graphics Cursor

22 X Coord Y Coord Draw Line to X/Y

23 X Coord Y Coord Erase Line to X/Y

24 X Coord Y Coord Set Point at X/Y

25 X Coord Y Coord Clear Point at X/Y

26 Radius Draw Circle

96

97

Appendix C. Key Definitions With
Hexadecimal Values

NORM SHFT CTRL NORM SHFT CTRL NORM SHFT CTRL
---- ---- ------ ---- ---- ------ ---- ---- ------
0 30 0 30 -- @ 40 ' 60 NUL 00 P 50 p 70 DLE 10
1 31 ! 21 | 7C A 41 a 61 SOH 01 Q 51 q 71 DC1 11
2 32 " 22 00 B 42 b 62 STX 02 R 52 r 72 DC2 12
3 33 # 23 - 7E C 43 c 63 ETX 03 S 53 s 73 DC3 13
4 34 $ 24 00 0 44 d 64 EOT 04 T 54 t 74 DC4 14
5 35 % 25 00 E 45 e 65 END 05 U 55 u 75 NAK 15
6 36 & 26 00 F 46 f 66 ACK 06 V 56 V 76 SYN 16
7 37 ' 27 5E G 47 g 67 BEL 07 W 57 w 77 ETB 17
8 38 (28 [5B H 48 h 68 BSP 08 X 58 x 78 CAN 18
9 39) 29] 5D I 49 i 69 HT 09 Y 59 y 79 EM 19
: 3A * 2A 00 J 4A j 6A LF 0A Z 5A z 7A SUM 1A
; 3B + 2B 00 K 4B k 6B VT 0B
, 2C < 3C { 7B L 4C l 6C FF 0C
- 2D = 3D - 5F M 4D m 6D CR 00
. 2E > 3E } 7D N 4E n 6E CO CE
/ 2F ? 3F \ 5C O 4F o 6F CI 0F

 FUNCTION KEYS

 NORM SHFT CTRL
 ---- ---- ----
 BREAK 05 03 1B
 ENTER 0D 0D 0D
 SPACE 20 20 20
 <- 08 18 10
 -> 09 19 11
 v 0A 1A 12
 ^ 0C 1C 13

98

99

Appendix D. GO51...The 51 Column
by 24 Line Video Display

An alternative video screen device driver, which provides a 51 column by 24 line display with upper
and lower case character sets, can be incorporated into OS-9 with the command:

GO51

This command replaces the normal text screen driver with one that uses high resolution graphics to
“draw” the characters. As there are fewer pixels (dots) per character in this mode more characters can
be displayed on the screen, albeit with some loss of character definition.

Note, however, that the use of a high resolution graphics page means that an extra 6K bytes will be
needed in this mode. This extra memory requirement is not normally a problem but in memory-critical
applications, such as the C and Pascal compilers, the user can simply avoid the use of GO51.

This mode of display has a set of escape sequences (commands) to emulate commercial data terminals.
In addition to the video screen driver, GO51 provides a new keyboard driver which features auto-
repeat. The keyboard code allocation is the same as described in section 2.4.3 and Appendix D.

D.1. The GO51 Display Functions
Like the normal 32 by 16 video display functions described in Appendix C the 51 by 24 mode provides
many built in facilities to control the display. These functions are activated by the use of the various
escape sequences and control characters described below:

Escape Sequence (Hex) Name/Function

1B 41 X Y CURSOR XY - move cursor to column X(0-50) and Y(0-23)
where X and Y are single byte values.

1B 42 CLEAR EOL - clear from cursor to the end of line. Cursor
position remains unchanged.

1B 43 CURSOR RIGHT - move cursor right by one character
position.

1B 44 CURSOR UP - move cursor up by one line.

1B 45 CURSOR DOWN - move cursor down one line.

1B 46 REVERSE ON - turn reverse field on.

1B 47 REVERSE OFF - turn reverse field off.

1B 48 UNDERLINE ON - turn underline on.

1B 49 UNDERLINE OFF - turn underline off.

1B 4A CLEAR EOS - clear from cursor to end of screen. Cursor
position remains unchanged.

Control Character
(Hex)

Name/Function

07 BELL - generates a short audible tone.

08 BACKSPACE (CURSOR LEFT) - moves cursor left one
character position.

0A LINE FEED - move cursor down by one line.

0B CURSOR HOME - move cursor to home position 0,0 (top left).

0C CLEAR SCREEN - clears the screen and home cursor.

100

101

Appendix E. Using the Serial Interface
For those who wish to use the serial port, the input or output path of a program may be redirected to
the serial port of your computer.

This is done by including the following module in the OS-9 kernel:

ACIA51 - Serial Device Driver

To load this module into the kernel enter the following command line:

LOAD /D0/CMDS/ACIA51

E.1. Serial Printer Implementation
For those with a serial printer, you can use the serial port in the redirection of a program's output path
by including the following modifier at the end of a command line:

>/P1

The baud rate of the serial port may be changed as follows:

XMODE /P1 BAUD=3

This will change the baud rate to 1200 characters per second. For a detailed description of the baud
rate see the XMODE command description.

E.2. Serial Terminal Implementation
For those who wish to connect two computers, running OS-9, together using the serial port, redirection
of the input or output paths is possible using the following modifier at the end of a command line:

>/T1 - for an output path

</T1 - for an input path

To pass a file of data between the two computers, one must be configured for input from the serial
port and the other configured for output:

Computer 1, BUILD TEXT </T1 - input to port

Computer 2, BUILD <TEXT /T1 - output to port

Using the above example, the text file on computer 2 will be transferred to a file called TEXT on
computer 1.

When the command line is entered on computer 1, the system will reply with a question mark and
wait for information from the serial port. The command line on computer 2 will send data to the now
waiting computer 1. A string of question marks will now be seen, this is the number of lines sent and
recieved by the respective computers.

To create a log-off sequence after such a transfer, use the DISPLAY command as follows:

Computer 1, BUILD <TEXT /T1 ; DISPLAY 0A 0D >/T1

102

103

Command
Summary
A
ASM, 43
ATTR, 44

B
BACKUP, 44
BASIC09, 45
BINEX, 46
BUILD, 47

C
CC, 47
CHD/CHX, 48
CMP, 49
COBBLER, 49
COPY, 50

D
DATE, 51
DCHECK, 51
DEBUG, 54
DEL, 54
DELDIR, 55
DEVS, 56
DIR, 56
DISASM, 57
DISPLAY, 58
DMODE, 58
DSAVE, 59
DUMP, 60

E
ECHO, 60
EDIT, 61
EX, 61
EXBIN, 62
EXMODE, 62

F
FORMAT, 64
FREE, 64

G
GO51, 65

H
HELP, 66

I
IDENT, 67

K
KILL, 69

L
LINK, 69
LIST, 70
LOAD, 71
LOGIN, 71

M
MAKDIR, 73
MDIR, 73
MERGE, 74
MFREE, 75

O
OS9GEN, 75

P
PRINTERR, 77
PROCS, 77
PWD/PXD, 78

R
RENAME, 78
RUNB, 79

S
SAVE, 79
SETIME, 80
SETPR, 80
SHELL, 81
SLEEP, 82
SMAP, 82

T
TEE, 83
TMODE, 83
TSMON, 85

U
UNLINK, 85

V
VERIFY, 86

X
XMODE, 87

104

	OS-9 Operating System User's Guide
	Table of Contents
	Welcome to OS-9!
	Chapter 1. Getting Started...
	1.1. What You Need to Run OS-9
	1.1.1. Starting the System
	1.1.2. In Case You Have Problems Starting OS-9
	1.1.3. A Quick Introduction to the Use of the Keyboard and Disks
	1.1.4. Initial Explorations

	1.2. Making a Backup of the System Disk
	1.2.1. Formatting Blank Disks
	1.2.2. Running the Backup Program

	Chapter 2. Basic Interactive Functions
	2.1. Running Commands and Basic Shell Operation
	2.1.1. Sending Output to the Printer

	2.2. Shell Command Line Parameters
	2.3. Some Common Command Formats
	2.4. Using the Keyboard and Video Display
	2.4.1. Video Display Functions
	2.4.2. Keyboard Shift and Control Functions
	2.4.3. Control Key Functions

	Chapter 3. The OS-9 File System
	3.1. Introduction to the Unified Input/Output System
	3.2. Pathlists: How Paths Are Named
	3.3. I/O Device Names
	3.4. Multifile Devices And Directory Files
	3.5. Creating and Using Directories
	3.6. Deleting Directory Files
	3.7. Additional Information About Directories
	3.8. Using and Changing Working Directories
	3.8.1. Automatic Selection of Working Directories
	3.8.2. Changing Current Working Directories
	3.8.3. Anonymous Directory Names

	3.9. The File Security System
	3.9.1. Examining and Changing File Attributes

	3.10. Reading and Writing From Files
	3.10.1. File Usage in OS-9
	3.10.2. Text Files
	3.10.3. Random Access Data Files
	3.10.4. Executable Program Module Files
	3.10.5. Directory Files
	3.10.6. Miscellaneous File Usage
	3.10.7. Record Lockout (Level Two Only)

	3.11. Physical File Organization
	3.12. Physical Sector I/O

	Chapter 4. Advanced Features of the Shell
	4.1. A More Detailed Description Command Line Processing
	4.2. Execution Modifiers
	4.2.1. Alternate Memory Size Modifier
	4.2.2. I/O Redirection Modifiers

	4.3. Command Separators
	4.3.1. Sequential Execution
	4.3.2. Concurrent Execution
	4.3.3. Pipes and Filters

	4.4. Command Grouping
	4.5. Built-in Shell Commands and Options
	4.6. Shell Procedure Files
	4.7. Error Reporting
	4.8. Running Compiled Intermediate Code Programs
	4.9. Setting Up Timesharing System Procedure Files

	Chapter 5. Multiprogramming and Memory Management
	5.1. Processor Time Allocation and Timeslicing
	5.2. Process States
	5.3. Creation of New Processes
	5.4. Basic Memory Management Functions
	5.4.1. Loading Program Modules Into Memory
	5.4.2. Loading Multiple Programs
	5.4.3. Memory Fragmentation

	Chapter 6. Use of the System Disk
	6.1. The OS9Boot File
	6.2. The SYS Directory
	6.3. The Startup File
	6.4. The CMDS Directory
	6.5. The DEFS Directory
	6.6. Changing System Disks
	6.7. Making New System Disks

	Chapter 7. System Command Descriptions
	7.1. Formal Syntax Notation
	7.2. Commands
	ASM
	ATTR
	BACKUP
	BASIC09
	BINEX
	BUILD
	CC
	CHD/CHX
	CMP
	COBBLER
	COPY
	DATE
	DCHECK
	DEBUG
	DEL
	DELDIR
	DEVS
	DIR
	DISASM
	DISPLAY
	DMODE
	DSAVE
	DUMP
	ECHO
	EDIT
	EX
	EXBIN
	EXMODE
	FORMAT
	FREE
	GO51
	HELP
	IDENT
	KILL
	LINK
	LIST
	LOAD
	LOGIN
	MAKDIR
	MDIR
	MERGE
	MFREE
	OS9GEN
	PRINTERR
	PROCS
	PWD/PXD
	RENAME
	RUNB
	SAVE
	SETIME
	SETPR
	SHELL
	SLEEP
	SMAP
	TEE
	TMODE
	TSMON
	UNLINK
	VERIFY
	XMODE

	Appendix A. OS-9 Error Codes
	A.1. Device Driver Errors

	Appendix B. VDG Display System Functions
	B.1. The Video Display Generator
	B.2. Alpha Mode Display
	B.3. Graphics Mode Display
	B.4. Get Status Commands

	Appendix C. Key Definitions With Hexadecimal Values
	Appendix D. GO51...The 51 Column by 24 Line Video Display
	D.1. The GO51 Display Functions

	Appendix E. Using the Serial Interface
	E.1. Serial Printer Implementation
	E.2. Serial Terminal Implementation

	Command Summary

